Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Ce and Sc dopants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3250 KB  
Article
Three-Layered Composite Scintillator Based on the Epitaxial Structures of YAG and LuAG Garnets Doped with Ce3+ and Sc3+ Impurities
by Sandra Witkiewicz-Łukaszek, Vitalii Gorbenko, Tetiana Zorenko, Jan Pejchal, Jiri A. Mares, Romana Kucerkova, Alena Beitlerova, Martin Nikl, Oleg Sidletskiy, Janusz Winiecki, Carmelo D’Ambrosio and Yuriy Zorenko
Materials 2024, 17(16), 4025; https://doi.org/10.3390/ma17164025 - 13 Aug 2024
Cited by 3 | Viewed by 1471
Abstract
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite [...] Read more.
In this study, we propose novel three-layer composite scintillators designed for the simultaneous detection of different ionizing radiation components. These scintillators are based on epitaxial structures of LuAG and YAG garnets, doped with Ce3+ and Sc3+ ions. Samples of these composite scintillators, containing YAG:Ce and LuAG:Ce single crystalline films with different thicknesses and LuAG:Sc single crystal substrates, were grown using the liquid phase epitaxy method from melt solutions based on PbO-B2O3 fluxes. The scintillation properties of the proposed composites, YAG:Ce film/LuAG:Sc film/LuAG:Ce crystal and YAG:Ce film/LuAG:Ce film/LuAG:Sc crystal, were investigated under excitation by radiation with α-particles from a 239Pu source, β-particles from 90Sr sources and γ-rays from a 137Cs source. Considering the properties of the mentioned composite scintillators, special attention was paid to the ability of simultaneous separation of the different components of mixed ionizing radiation containing the mentioned particles and quanta using scintillation decay kinetics. The differences in scintillation decay curves under α- and β-particle and γ-ray excitations were characterized using figure of merit (FOM) values at various scintillation decay intensity levels (1/e, 0.1, 0.05, 0.01). Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

20 pages, 16289 KB  
Article
The Effect of Silver and Samarium on the Properties of Bioglass Coatings Produced by Pulsed Laser Deposition and Spin Coating
by Roxana Lavric, Cornelia Vreme, Cristina Busuioc, Gabriela-Olimpia Isopencu, Adrian-Ionut Nicoara, Ovidiu-Cristian Oprea, Daniel-Dumitru Banciu, Izabela Constantinoiu and Ana-Maria-Raluca Musat
J. Funct. Biomater. 2023, 14(12), 560; https://doi.org/10.3390/jfb14120560 - 28 Nov 2023
Cited by 11 | Viewed by 2763
Abstract
The current study reports the use of silver (Ag) and samarium (Sm) as dopants to improve the properties of standard bioglass in terms of biological performance. This experiment considers thin films of doped bioglass obtained by pulsed laser deposition (PLD) and spin coating [...] Read more.
The current study reports the use of silver (Ag) and samarium (Sm) as dopants to improve the properties of standard bioglass in terms of biological performance. This experiment considers thin films of doped bioglass obtained by pulsed laser deposition (PLD) and spin coating (SC). For both methods, some parameters were gradually varied, as the main objective was to produce a bioglass that could be used in biomedical fields. In order to study the morphology, the phase composition and other properties, the samples obtained were subjected to multiple analyses, such as thermal analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), Raman spectroscopy, and x-ray diffraction (XRD). Furthermore, the in vitro bioactivity of the samples, as assessed through simulated body fluid (SBF) immersion, as well as immunocytochemistry and evaluation of actin filaments, assessed through fluorescence microscopy, are reported. The results confirmed the formation of the designed vitreous target employed as the source of material in the PLD experiments only at sintering temperatures below 800 °C; this vitreous nature was preserved in the grown film as well. The presence of Ag and Ce dopants in the parent glassy matrix was validated for all stages, from powder, to target, to PLD/SC-derived coatings. Additionally, it was demonstrated that the surface topography of the layers can be adjusted by using substrates with different roughness or by modulating the processing parameters, such as substrate temperature and working pressure in PLD, rotation speed, and number of layers in SC. The developed material was found to be highly bioactive after 28 days of immersion in SBF, but it was also found to be a potential candidate for inhibiting the growth of Gram-negative bacteria and a suitable support for cell growth and proliferation. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

18 pages, 5410 KB  
Article
The La+3-, Nd+3-, Bi+3-Doped Ceria as Mixed Conductor Materials for Conventional and Single-Component Solid Oxide Fuel Cells
by Mahrukh Bukhari, Munazza Mohsin, Zohra Nazir Kayani, Shahzad Rasool and Rizwan Raza
Energies 2023, 16(14), 5308; https://doi.org/10.3390/en16145308 - 11 Jul 2023
Cited by 2 | Viewed by 1836
Abstract
Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for [...] Read more.
Clean energy devices are essential in today’s environment to combat climate change and work towards sustainable development. In this paper, the potential materials A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) were analyzed for clean energy devices, specifically for conventional and single-component solid oxide fuel cells (SC-SOFCs). The wet chemical route has been followed for the preparation of samples. X-ray diffraction patterns showed that all three samples exhibited a defected fluorite cubic structure. It also revealed the presence of dopants in the ceria, which was confirmed by the fingerprint region of FTIR. The optical behavior, fuel cell performance and electrochemical behavior were studied by UV–vis, fuel cell testing apparatus and EIS, respectively. The SEM results showed that all samples had irregular polygons. In Raman spectra, the F2g mode corresponding to the space group (Fm3m) confirms the fluorite structure. The Raman spectra showed that A2Ce2O7−δ (A = La+3, Nd+3, Bi+3) have different trends. The conventional fuel cell performance showed that the maximum power density of Bi2Ce2O7 was 0.65 Wcm−2 at 600 °C. The performance of A2Ce2O7−δ (A = La3+, Nd3+, Bi3+) as a single-component fuel cell revealed that Nd2Ce2O7−δ is the best choice with semiconductors conductors ZnO and NCAL. The highest power density (Pmax) of the Nd2Ce2O7/ZnO was 0.58 Wcm−2, while the maximum power output (Pmax) of the Nd2Ce2O7/NCAL was 0.348 Wcm−2 at 650 °C. All the samples showed good agreement with the ZnO as compared to NCAL for SC-SOFCs. Full article
(This article belongs to the Special Issue Advances in Energy Materials and Clean Energy Technologies)
Show Figures

Figure 1

12 pages, 9265 KB  
Article
Syntheses and Characterization of Novel Perovskite-Type LaScO3-Based Lithium Ionic Conductors
by Guowei Zhao, Kota Suzuki, Masaaki Hirayama and Ryoji Kanno
Molecules 2021, 26(2), 299; https://doi.org/10.3390/molecules26020299 - 8 Jan 2021
Cited by 16 | Viewed by 3821
Abstract
Perovskite-type lithium ionic conductors were explored in the (LixLa1−x/3)ScO3 system following their syntheses via a high-pressure solid-state reaction. Phase identification indicated that a solid solution with a perovskite-type structure was formed in the range 0 ≤ [...] Read more.
Perovskite-type lithium ionic conductors were explored in the (LixLa1−x/3)ScO3 system following their syntheses via a high-pressure solid-state reaction. Phase identification indicated that a solid solution with a perovskite-type structure was formed in the range 0 ≤ x < 0.6. When x = 0.45, (Li0.45La0.85)ScO3 exhibited the highest ionic conductivity and a low activation energy. Increasing the loading of lithium as an ionic diffusion carrier expanded the unit cell volume and contributed to the higher ionic conductivity and lower activation energy. Cations with higher oxidation numbers were introduced into the A/B sites to improve the ionic conductivity. Ce4+ and Zr4+ or Nb5+ dopants partially substituted the A-site (La/Li) and B-site Sc, respectively. Although B-site doping produced a lower ionic conductivity, A-site Ce4+ doping improved the conductive properties. A perovskite-type single phase was obtained for (Li0.45La0.78Ce0.05)ScO3 upon Ce4+ doping, providing a higher ionic conductivity than (Li0.45La0.85)ScO3. Compositional analysis and crystal-structure refinement of (Li0.45La0.85)ScO3 and (Li0.45La0.78Ce0.05)ScO3 revealed increased lithium contents and expansion of the unit cell upon Ce4+ co-doping. The highest ionic conductivity of 1.1 × 10−3 S cm−1 at 623 K was confirmed for (Li0.4Ce0.15La0.67)ScO3, which is more than one order of magnitude higher than that of the (LixLa1−x/3)ScO3 system. Full article
Show Figures

Figure 1

10 pages, 2416 KB  
Article
Atomistic Simulations of the Defect Chemistry and Self-Diffusion of Li-ion in LiAlO2
by N. Kuganathan, J. Dark, E.N. Sgourou, Y. Panayiotatos and A. Chroneos
Energies 2019, 12(15), 2895; https://doi.org/10.3390/en12152895 - 27 Jul 2019
Cited by 13 | Viewed by 4229
Abstract
Lithium aluminate, LiAlO2, is a material that is presently being considered as a tritium breeder material in fusion reactors and coating material in Li-conducting electrodes. Here, we employ atomistic simulation techniques to show that the lowest energy intrinsic defect process is [...] Read more.
Lithium aluminate, LiAlO2, is a material that is presently being considered as a tritium breeder material in fusion reactors and coating material in Li-conducting electrodes. Here, we employ atomistic simulation techniques to show that the lowest energy intrinsic defect process is the cation anti-site defect (1.10 eV per defect). This was followed closely by the lithium Frenkel defect (1.44 eV per defect), which ensures a high lithium content in the material and inclination for lithium diffusion from formation of vacancies. Li self-diffusion is three dimensional and exhibits a curved pathway with a migration barrier of 0.53 eV. We considered a variety of dopants with charges +1 (Na, K and Rb), +2 (Mg, Ca, Sr and Ba), +3 (Ga, Fe, Co, Ni, Mn, Sc, Y and La) and +4 (Si, Ge, Ti, Zr and Ce) on the Al site. Dopants Mg2+ and Ge4+ can facilitate the formation of Li interstitials and Li vacancies, respectively. Trivalent dopants Fe3+, Ni3+ and Mn3+ prefer to occupy the Al site with exoergic solution energies meaning that they are candidate dopants for the synthesis of Li (Al, M) O2 (M = Fe, Ni and Mn) compounds. Full article
Show Figures

Graphical abstract

Back to TopTop