Loading [MathJax]/jax/output/HTML-CSS/jax.js
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Clapp oscillator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 47952 KiB  
Article
Chaotic and Hyperchaotic Dynamics of a Clapp Oscillator
by Jiri Petrzela
Mathematics 2022, 10(11), 1868; https://doi.org/10.3390/math10111868 - 30 May 2022
Cited by 11 | Viewed by 2551
Abstract
This paper describes recent findings achieved during a numerical investigation of the circuit known as the Clapp oscillator. By considering the generalized bipolar transistor as an active element and after applying the search-for-chaos optimization approach, parameter regions that lead to either chaotic or [...] Read more.
This paper describes recent findings achieved during a numerical investigation of the circuit known as the Clapp oscillator. By considering the generalized bipolar transistor as an active element and after applying the search-for-chaos optimization approach, parameter regions that lead to either chaotic or hyperchaotic dynamics were discovered. For starters, the two-port that represents the transistor was firstly assumed to have a polynomial-forward trans-conductance; then the shape of trans-conductance changes into the piecewise-linear characteristics. Both cases cause vector field symmetry and allow the coexistence of several different attractors. Chaotic and hyperchaotic behavior were deeply analyzed by using standard numerical tools such as Lyapunov exponents, basins of attraction, bifurcation diagrams, and solution sensitivity. The structural stability of strange attractors observed numerically was finally proved via a real practical experiment: a flow-equivalent chaotic oscillator was constructed as the lumped electronic circuit, and desired attractors were captured and provided as oscilloscope screenshots. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Chaos Theory)
Show Figures

Figure 1

25 pages, 9526 KiB  
Article
Design and Implementation of a Novel Tilt Sensor Based on the Principle of Variable Reluctance
by Lei Guo, Lishuai Zhang, Yuan Song, Liang Zhao and Qiancheng Zhao
Sensors 2019, 19(23), 5228; https://doi.org/10.3390/s19235228 - 28 Nov 2019
Cited by 4 | Viewed by 4707
Abstract
Tilt angle measurement in dynamic systems is problematic because the rotation of the measured platform is coupled with translation. Therefore, when some sensors are applied in dynamic systems, their output signals are often submerged in the noise signals generated by translation. To enhance [...] Read more.
Tilt angle measurement in dynamic systems is problematic because the rotation of the measured platform is coupled with translation. Therefore, when some sensors are applied in dynamic systems, their output signals are often submerged in the noise signals generated by translation. To enhance the ability of tilt sensors to resist translational noise, a dynamic tilt sensor is proposed based on the principle of variable reluctance from the perspective of sensor structure. The eccentric structure of the sensor constructed with a shell, liquid, and internal damping plate was designed according to the principles of mechanics. The characteristic of translational acceleration restraint determined by the sensor structure was established theoretically. In addition, the magnetic circuit of the sensor was analyzed to illustrate the sensor’s working principles. A Clapp oscillator circuit was designed to convert mechanical motion into a measureable electrical signal. A method to determine the sensor’s direction of rotation is proposed. A waveform conversion circuit was designed to convert the sine wave output of the Clapp oscillator to a square wave, and a square-wave frequency measurement circuit was designed based on the C8051 micro-control unit. A translation–rotation experimental hardware platform was constructed. The data acquisition program was designed on a PC platform, and the translation–rotation experiments were conducted with an MTi attitude measurement unit as a reference. The validity of the tilt angle measurements and the effect of the translational acceleration restraint of the sensor were verified by the experimental data. The theoretical results obtained were consistent with the experimental data, verifying the validity of the theoretical analysis and experimental devices employed. A measurement range of −180 to 180° was achieved. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

17 pages, 18115 KiB  
Article
A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System
by Yong Ye, Jiahao Deng, Sanmin Shen, Zhuo Hou and Yuting Liu
Sensors 2016, 16(5), 699; https://doi.org/10.3390/s16050699 - 16 May 2016
Cited by 31 | Viewed by 8912
Abstract
A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a [...] Read more.
A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vpp/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. Full article
(This article belongs to the Special Issue Non-Contact Sensing)
Show Figures

Figure 1

Back to TopTop