Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Cu(acac)2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3806 KB  
Article
Bioinspired Pd-Cu Alloy Nanoparticles as Accept Agent for Dye Degradation Performances
by Shiyue Chen, Yujun Yang, Mingjun Zhang, Xiaohong Ma, Xiaoxiao He, Teng Wang, Xi Hu and Xiang Mao
Int. J. Mol. Sci. 2022, 23(22), 14072; https://doi.org/10.3390/ijms232214072 - 15 Nov 2022
Cited by 2 | Viewed by 2484
Abstract
Dye degradation is a key reaction in organic decomposition production through electron donor transferring. Palladium (Pd) is the best-known element for synthesis Pd-based catalyst, the surface status determines the scope of relative applications. Here we first prepare Pd-Cu alloy nanoparticles (NPs) by co-reduction [...] Read more.
Dye degradation is a key reaction in organic decomposition production through electron donor transferring. Palladium (Pd) is the best-known element for synthesis Pd-based catalyst, the surface status determines the scope of relative applications. Here we first prepare Pd-Cu alloy nanoparticles (NPs) by co-reduction of Cu(acac)2 (acac = acetylacetonate) and Pd(C5HF6O2)2 in the presence of sodium borohydride (NaBH4) and glutathione (GSH). The obtained Pd-Cu is about ~10 nm with super-hydrophilicity in aqueous mediums. The structural analysis clearly demonstrated the uniform distribution of Pd and Cu element. The colloidal solution keeps stability even during 30 days. Bimetallic Pd-Cu NPs shows biocompatibility in form of cell lines (IMEF, HACAT, and 239 T) exposed to colloidal solution (50 µg mL−1) for 2 days. It shows the catalytic multi-performance for dye degradation such as methyl orange (MO), rhodamine B (RhB), and methylene blue (MB), respectively. The as-synthesized nanoparticles showed one of the best multiple catalytic activities in the industrially important (electro)-catalytic reduction of 4-nitrophenol (4-NP) to corresponding amines with noticeable reduced reaction time and increased rate constant without the use of any large area support. In addition, it exhibits peroxidase-like activity in the 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) color test and exhibit obvious difference with previous individual metal materials. By treated with high intensity focused ultrasound filed (HIFU), Pd-Cu NPs might be recrystallized and decreased the diameters than before. The enhancement in catalytic performance is observed obviously. This work expedites rational design and synthesis of the high-hierarchy alloy catalyst for biological and environment-friendly agents. Full article
(This article belongs to the Special Issue State-of-the-Art Nanoscience in Asia)
Show Figures

Figure 1

10 pages, 7661 KB  
Article
Coordination of a Pyrazole Functionalized Acetylacetone to the Coinage Metal Cations: An Unexpected Packing Similarity and a Trinuclear CuII/AuI Complex
by Steven van Terwingen, Ben Ebel, Noah Nachtigall and Ulli Englert
Crystals 2022, 12(7), 984; https://doi.org/10.3390/cryst12070984 - 15 Jul 2022
Cited by 1 | Viewed by 2060
Abstract
The heteroditopic molecule HacacMePz combines a Pearson hard acetylacetone donor site with a softer trimethylpyrazole and shows site selectivity towards the coinage metal cations. The coordination of the N donor function was achieved towards AgI and AuI, leading to the [...] Read more.
The heteroditopic molecule HacacMePz combines a Pearson hard acetylacetone donor site with a softer trimethylpyrazole and shows site selectivity towards the coinage metal cations. The coordination of the N donor function was achieved towards AgI and AuI, leading to the salt [Ag(HacacMePz)2]PF6 (1) and the neutral complex [AuCl(HacacMePz)] (2). In either case, linear coordination about the coinage metal cation is observed. Interestingly, both complexes crystallize in space group Pbca with similar cell parameters. The two solids do not qualify as isostructural, albeit being closely related in real and reciprocal space. To probe the ligand’s ability for the envisaged synthesis of bimetallic coordination polymers, the mixed-metal CuII/AuI complex [Cu(acacMePzAuCl)2] (3) was obtained. In this mixed-metal oligomer, the central CuII cation adopts a square planar coordination environment with two O,O-coordinated acacMePz ligands, whose softer N donor sites are saturated with a AuCl moiety. Full article
(This article belongs to the Special Issue Mixed-Metal Coordination Polymers)
Show Figures

Figure 1

Back to TopTop