Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (758)

Search Parameters:
Keywords = Cu–Ni alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 13959 KiB  
Article
Microstructural Evolution and Wear Resistance of Silicon-Containing FeNiCrAl0.7Cu0.3Six High-Entropy Alloys
by Junhong Li, Xuebing Han, Jiaxin Liu, Xu Wang and Yanzhou Li
Coatings 2025, 15(6), 676; https://doi.org/10.3390/coatings15060676 - 3 Jun 2025
Abstract
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in [...] Read more.
This study investigates the influence of Si content (x = 0, 0.1, 0.3, 0.5) on the microstructure, mechanical properties, and wear behavior of FeNiCrAl0.7Cu0.3Six high-entropy alloys. With increasing silicon content, the microstructure evolves from a dendritic morphology in the silicon-free FeNiCrAl0.7Cu0.3 alloy to a transitional structure in the FeNiCrAl0.7Cu0.3Si0.1 alloy that retains dendritic features; then to a chrysanthemum-like morphology in the FeNiCrAl0.7Cu0.3Si0.3 alloy, and finally to island-like grains in the FeNiCrAl0.7Cu0.3Si0.5 alloy. This evolution is accompanied by a phase transition from an Fe and Cr-rich body-centered cubic phase to an Al and Ni-rich body-centered cubic phase, with silicon showing a tendency to segregate alongside aluminum and nickel. The microhardness increases from 498.2 ± 15.0 HV for the FeNiCrAl0.7Cu0.3 alloy, to 502.7 ± 32.7 HV for FeNiCrAl0.7Cu0.3Si0.1, 577.3 ± 24.5 HV for FeNiCrAl0.7Cu0.3Si0.3, and 863.2 ± 23.5 HV for FeNiCrAl0.7Cu0.3Si0.5. The average friction coefficients are 0.571, 0.551, 0.524, and 0.468, respectively. The wear mass decreases from 1.31 mg in the FeNiCrAl0.7Cu0.3 alloy to 1.28 mg, 1.11 mg, and 0.78 mg in the FeNiCrAl0.7Cu0.3Si0.1, FeNiCrAl0.7Cu0.3Si0.3, and FeNiCrAl0.7Cu0.3Si0.5 samples, respectively. These trends are consistent with the increase in microhardness, supporting the inverse relationship between hardness and wear. As the silicon content increases, the dominant wear mechanism changes from abrasive wear to adhesive wear, with the high-silicon alloy exhibiting lamellar debris on the worn surface. These findings confirm that silicon addition enhances microstructural refinement, mechanical strength, and wear resistance of the alloy system. Full article
Show Figures

Figure 1

72 pages, 7480 KiB  
Systematic Review
Synthesis of Iron-Based and Aluminum-Based Bimetals: A Systematic Review
by Jeffrey Ken B. Balangao, Carlito Baltazar Tabelin, Theerayut Phengsaart, Joshua B. Zoleta, Takahiko Arima, Ilhwan Park, Walubita Mufalo, Mayumi Ito, Richard D. Alorro, Aileen H. Orbecido, Arnel B. Beltran, Michael Angelo B. Promentilla, Sanghee Jeon, Kazutoshi Haga and Vannie Joy T. Resabal
Metals 2025, 15(6), 603; https://doi.org/10.3390/met15060603 - 27 May 2025
Viewed by 292
Abstract
Bimetals—materials composed of two metal components with dissimilar standard reduction–oxidation (redox) potentials—offer unique electronic, optical, and catalytic properties, surpassing monometallic systems. These materials exhibit not only the combined attributes of their constituent metals but also new and novel properties arising from their synergy. [...] Read more.
Bimetals—materials composed of two metal components with dissimilar standard reduction–oxidation (redox) potentials—offer unique electronic, optical, and catalytic properties, surpassing monometallic systems. These materials exhibit not only the combined attributes of their constituent metals but also new and novel properties arising from their synergy. Although many reviews have explored the synthesis, properties, and applications of bimetallic systems, none have focused exclusively on iron (Fe)- and aluminum (Al)-based bimetals. This systematic review addresses this gap by providing a comprehensive overview of conventional and emerging techniques for Fe-based and Al-based bimetal synthesis. Specifically, this work systematically reviewed recent studies from 2014 to 2023 using the Scopus, Web of Science (WoS), and Google Scholar databases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and was registered under INPLASY with the registration number INPLASY202540026. Articles were excluded if they were inaccessible, non-English, review articles, conference papers, book chapters, or not directly related to the synthesis of Fe- or Al-based bimetals. Additionally, a bibliometric analysis was performed to evaluate the research trends on the synthesis of Fe-based and Al-based bimetals. Based on the 122 articles analyzed, Fe-based and Al-based bimetal synthesis methods were classified into three types: (i) physical, (ii) chemical, and (iii) biological techniques. Physical methods include mechanical alloying, radiolysis, sonochemical methods, the electrical explosion of metal wires, and magnetic field-assisted laser ablation in liquid (MF-LAL). In comparison, chemical protocols covered reduction, dealloying, supported particle methods, thermogravimetric methods, seed-mediated growth, galvanic replacement, and electrochemical synthesis. Meanwhile, biological techniques utilized plant extracts, chitosan, alginate, and cellulose-based materials as reducing agents and stabilizers during bimetal synthesis. Research works on the synthesis of Fe-based and Al-based bimetals initially declined but increased in 2018, followed by a stable trend, with 50% of the total studies conducted in the last five years. China led in the number of publications (62.3%), followed by Russia, Australia, and India, while Saudi Arabia had the highest number of citations per document (95). RSC Advances was the most active journal, publishing eight papers from 2014 to 2023, while Applied Catalysis B: Environmental had the highest number of citations per document at 203. Among the three synthesis methods, chemical techniques dominated, particularly supported particles, galvanic replacement, and chemical reduction, while biological and physical methods have started gaining interest. Iron–copper (Fe/Cu), iron–aluminum (Fe/Al), and iron–nickel (Fe/Ni) were the most commonly synthesized bimetals in the last 10 years. Finally, this work was funded by DOST-PCIEERD and DOST-ERDT. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 10360 KiB  
Article
Effects of Graphite Addition on Structure and Properties of CrCuFeNiTiAl1 High-Entropy Alloys
by Sergio Antonio García-Estrada, Ivanovich Estrada-Guel, Carlos Gamaliel Garay-Reyes, Cynthia Deisy Gómez-Esparza, Roberto Martínez-Sánchez, José Adalberto Castillo-Robles, José Amparo Rodríguez-García, Carlos Adrián Calles-Arriaga and Enrique Rocha-Rangel
Eng 2025, 6(6), 112; https://doi.org/10.3390/eng6060112 - 27 May 2025
Viewed by 109
Abstract
In this study, the CrCuFeNiTiAl1 equiatomic alloy was used as a base, which was modified by adding graphite in proportions of 0.5, 1.0, 2.5, and 5.0 mol%. The samples were obtained by powder metallurgy and sintering at 1200 °C for 2 h [...] Read more.
In this study, the CrCuFeNiTiAl1 equiatomic alloy was used as a base, which was modified by adding graphite in proportions of 0.5, 1.0, 2.5, and 5.0 mol%. The samples were obtained by powder metallurgy and sintering at 1200 °C for 2 h in a furnace with a protective argon atmosphere. Structural characterization was performed by XRD. A microstructural evaluation was conducted by SEM. The best mechanical microhardness and compressive strength results were obtained in the samples with the lowest amounts of graphite (238 μHV and 1000 MPa, respectively). The density values showed that samples with low amounts of graphite had better densification, lower porosity, and finer structural characteristics than those with graphite percentages higher than 1 mol%. The XRD studies determined the formation of a mixture of crystalline structures composed of FCC due to the presence of Cu, Ni, and Al metals; BCC due to Fe and Cr metals; and HCP due to Ti, and the formation of a Cr7C3 compound. SEM analysis showed the formation of cracks and porosity due to the formation of carbides. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

19 pages, 7141 KiB  
Article
Influence of Crystal Modifier Content on Ni-Cu Catalysts Dedicated to the Hydrogen Evolution Reaction
by Katarzyna Skibińska, Anna Kula, Dawid Kutyła, Marek Wojnicki and Piotr Żabiński
Materials 2025, 18(11), 2499; https://doi.org/10.3390/ma18112499 - 26 May 2025
Viewed by 247
Abstract
Ammonium chloride is a commonly used crystal modifier allowing the production of conical structures. Metals and alloys synthesized in the form of cones show enhanced catalytic activity and active surface area. Ni-Cu alloys as candidates for catalysts in the hydrogen evolution reaction were [...] Read more.
Ammonium chloride is a commonly used crystal modifier allowing the production of conical structures. Metals and alloys synthesized in the form of cones show enhanced catalytic activity and active surface area. Ni-Cu alloys as candidates for catalysts in the hydrogen evolution reaction were synthesized using a one-step method. The influence of the NH4Cl content on morphology, chemical and physical composition, wettability, roughness, and catalytic properties was analyzed using many techniques, including, inter alia, Scanning Electron Microscopy, X-ray Diffraction, Atomic Force Microscopy, and Linear Sweep Voltammetry. The proposed deposition parameters allow the successful synthesis of conical Ni-Cu structures with promising catalytic activity compared with other coatings of these alloys. The lowest determined value of the Tafel slope is 79 mV/dec for the sample deposited from the electrolyte with 40 g/L NH4Cl. Full article
Show Figures

Figure 1

16 pages, 11068 KiB  
Article
Effect of Interlayers on Microstructure and Corrosion Resistance of 304/45 Stainless Steel Cladding Plate
by Yongtong Chen and Yi Ding
Materials 2025, 18(11), 2473; https://doi.org/10.3390/ma18112473 - 24 May 2025
Viewed by 376
Abstract
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This [...] Read more.
During the high-temperature preparation of stainless steel cladding plate, carbon atoms from carbon steel diffused into stainless steel. When temperatures were within 450–850 °C, carbides precipitated at grain boundaries, which initiated intergranular sensitization and thereby reduced the corrosion resistance of stainless steel. This study designed NiP and NiCuP interlayer alloys to effectively block carbon diffusion in stainless steel cladding plates. The effect of adding interlayers on the microstructure of stainless steel cladding plate was studied by using optical microscopy and scanning electron microscopy. Electrochemical tests were subsequently conducted to evaluate the impact of interlayer incorporation on the corrosion resistance of stainless steel cladding. The results demonstrated that 304/45 specimens exhibited severe carbon diffusion, resulting in the poorest corrosion resistance. The addition of interlayers improved the corrosion resistance of stainless steel cladding to varying degrees. Among these, the 304/NiCuP/45 specimen showed the best performance. It had an intergranular corrosion susceptibility of only 0.25% and pitting potential as high as 0.336 V, which indicated its superior corrosion resistance. The passive film of stainless steel cladding exhibited n-type semiconductor characteristics. And 304/NiCuP/45 specimen demonstrated the lowest carrier density of 3.02 × 1018 cm−3, which indicated the formation of the densest passive film. Full article
Show Figures

Figure 1

18 pages, 6758 KiB  
Article
Effect of Brazing Temperature and Holding Time on the Interfacial Microstructure and Properties of TC4-Brazed Joints with Ti-Zr-Cu-Ni Amorphous Filler
by Yibin Wu, Jie Li, Zexin Wang, Sheng Lu and Kun Liu
Materials 2025, 18(11), 2471; https://doi.org/10.3390/ma18112471 - 24 May 2025
Viewed by 372
Abstract
A TC4 alloy was joined with Ti-Zr-Cu-Ni amorphous filler by vacuum brazing. The paper further explored how different brazing temperatures with a 20 min holding time, or varying holding times at a brazing temperature of 900 °C, impact the interface width, microstructure, composition [...] Read more.
A TC4 alloy was joined with Ti-Zr-Cu-Ni amorphous filler by vacuum brazing. The paper further explored how different brazing temperatures with a 20 min holding time, or varying holding times at a brazing temperature of 900 °C, impact the interface width, microstructure, composition distribution, microhardness, shear strength, and fracture surface of the brazed joints. The findings indicated that as the brazing temperature increased, the interface width became wider. Moreover, as the brazing temperature continued to rise, both the size of the Widmanstätten structure and the amount of the (Ti, Zr)2(Cu, Ni) brittle phase increased continuously, leading to the joint exhibiting harder and more brittle properties. As the temperature rose from 860 °C to 900 °C, the microhardness went up from 462.8 HV0.1 to 482.6 HV0.1. But when the temperature continued to increase (920 °C, 940 °C), the microhardness started to decrease, until it reached 392.6 HV0.1 at a holding time of 20 min. As the brazing temperature increased, the width of the joint interface expanded, and the shear strength continued to rise. When the brazing temperature rose to 940 °C, the shear strength increased to 223.9 MPa under a holding time of 20 min. With the prolongation of the holding time (from 10 min to 30 min), the Widmanstätten structure at the joint interface continuously grew towards the center. Additionally, the (Ti, Zr)2(Cu, Ni) phase and eutectic structure were separated by the Widmanstätten structure. The microhardness and shear strength reached their maximum values at 900 °C, and the shear strength was measured at 137.6 MPa. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Viewed by 237
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

13 pages, 4249 KiB  
Article
The First Layer: Single-Track Insights into Direct Energy Deposition Processed Cu-Ni Thermoelectric Alloys
by Nick Williams, Kyle Snyder, Ian Smith, Anthony Duong, Everett Carpenter and Radhika Barua
J. Manuf. Mater. Process. 2025, 9(6), 170; https://doi.org/10.3390/jmmp9060170 - 23 May 2025
Viewed by 308
Abstract
The shift to sustainable energy has accelerated the development of thermoelectric (TE) material for direct heat-to-electricity conversion without batteries or grid reliance. Cu-Ni alloys show promise for high-power, thermally stable TE applications like waste heat recovery and electronics cooling but require thermal conductivity [...] Read more.
The shift to sustainable energy has accelerated the development of thermoelectric (TE) material for direct heat-to-electricity conversion without batteries or grid reliance. Cu-Ni alloys show promise for high-power, thermally stable TE applications like waste heat recovery and electronics cooling but require thermal conductivity and microstructure optimization. This study investigates additive manufacturing (AM) of Cu-Ni alloys via laser powder-directed energy deposition (L-DED), enabling precise control over deposition parameters. Track geometries were analyzed using linear mass density (ML) and linear heat input (HL), which influence deposition quality and microstructural characteristics. A weighted qualitative process parameter decision matrix was developed to evaluate process conditions systematically. Optimal deposition was achieved with HL < 70 J/mm for ML ~0.016–0.021 g/mm and 98 J/mm < HL < 137 J/mm for ML = 0.026 g/mm, corresponding to an energy-to-mass ratio of ~4000 ± 500 kJ/g. While this study does not directly assess thermoelectric properties, it provides essential first-layer insights into how processing conditions affect track geometry, defect formation, and microstructure—information that is foundational for optimizing multi-layer builds and, ultimately, improving thermoelectric performance. These findings mark a critical step toward predictive process optimization and the accelerated design of Cu-Ni-based thermoelectric materials using AM techniques. Full article
Show Figures

Figure 1

19 pages, 10410 KiB  
Article
Influence of Cu on the Mechanical and Shape Memory Properties of TiNi Alloys
by Luzhou Dong, Weifang Mann and Bo He
Materials 2025, 18(10), 2407; https://doi.org/10.3390/ma18102407 - 21 May 2025
Viewed by 157
Abstract
The significant phase transformation hysteresis in TiNi alloys limits their performance. To address this, copper (Cu) was added as an alloying element to reduce hysteresis. This study synthesized three compositions of Ti50Ni50−xCux (x = 0, 5, 7 [...] Read more.
The significant phase transformation hysteresis in TiNi alloys limits their performance. To address this, copper (Cu) was added as an alloying element to reduce hysteresis. This study synthesized three compositions of Ti50Ni50−xCux (x = 0, 5, 7 at.%) shape memory alloys (SMAs) via vacuum arc melting to optimize the Cu content. The alloys were homogenized through hot rolling to maintain stable mechanical and shape memory properties. The hot-rolled Ti50Ni45Cu5 alloy demonstrated excellent shape memory behavior, achieving 100% thermal recovery after one cycle at 4% and 6% strain and 99.2% recovery after six cycles at 4% strain. It also exhibited outstanding mechanical performance, with a tensile strength of 900 MPa and 40% elongation. Microscopic analysis using scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) revealed that Cu preferentially segregates at grain boundaries, suppressing the formation of the Ti2(Ni,Cu) phase. This moderate segregation, combined with hot rolling, promotes the reprecipitation and uniform distribution of phases, reducing the likelihood of premature fracture caused by stress concentration during deformation. The moderate thickness and uniformly distributed martensite, as well as the Type II twins with strong deformation ability, significantly improved the shape memory properties of Ti50Ni45Cu5. This study provides valuable insights into the microscopic mechanisms influenced by Cu in TiNi alloys and proposes a novel strategy for controlling precipitate phases through adjustments in alloy composition and optimized processing conditions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

22 pages, 4310 KiB  
Review
The Microstructures and Properties of Cu-Ni-Co-Si Alloys: A Critical Review
by Fang Li, Wenteng Liu, Chao Ding, Shujuan Wang and Xiangpeng Meng
Metals 2025, 15(5), 564; https://doi.org/10.3390/met15050564 - 20 May 2025
Viewed by 290
Abstract
This review provides an overview of recent advancements in Cu-Ni-Co-Si alloys, focusing on their processing methods, microstructures, and properties. Due to their non-toxic composition, enhanced mechanical properties, and excellent electrical conductivity, Cu-Ni-Co-Si alloys have emerged as a promising alternative to traditional Cu-Be alloys [...] Read more.
This review provides an overview of recent advancements in Cu-Ni-Co-Si alloys, focusing on their processing methods, microstructures, and properties. Due to their non-toxic composition, enhanced mechanical properties, and excellent electrical conductivity, Cu-Ni-Co-Si alloys have emerged as a promising alternative to traditional Cu-Be alloys in the electrical and electronics industry. This review discusses various synthesis techniques, including casting, vacuum induction melting, and additive manufacturing, and evaluates their effects on the formed microstructures. In addition, it explores the influence of different elements and thermal treatments on the alloys’ microstructures and properties, discussing strategies to enhance the properties of Cu-Ni-Co-Si alloys. Key strengthening mechanisms—including precipitation hardening, grain boundary strengthening, and solid solution hardening—are examined in detail, with particular emphasis on their synergistic effects in optimizing alloy performance. Furthermore, future research directions are highlighted, focusing on the optimization of alloying element concentrations and heat treatment protocols to achieve an enhanced balance between strength and electrical conductivity. These improvements are critical for meeting the demanding requirements of advanced applications in electronics and high-reliability components. Full article
(This article belongs to the Special Issue Properties, Microstructure and Forming of Intermetallics)
Show Figures

Figure 1

14 pages, 8387 KiB  
Article
Liquid-State Interfacial Reactions of Lead-Free Solders with FeCoNiCr and FeCoNiMn Medium-Entropy Alloys at 250 °C
by Chao-Hong Wang and Yue-Han Li
Materials 2025, 18(10), 2379; https://doi.org/10.3390/ma18102379 - 20 May 2025
Viewed by 238
Abstract
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. [...] Read more.
This study investigates the interfacial reactions of FeCoNiCr and FeCoNiMn medium-entropy alloys (MEAs) with Sn and Sn-3Ag-0.5Cu (SAC305) solders at 250 °C. The evolution of interfacial microstructures is analyzed over various aging periods. For comparison, the FeCoNiCrMn high-entropy alloy (HEA) is also examined. In the Sn/FeCoNiCr system, a faceted (Fe,Cr,Co)Sn2 layer initially forms at the interface. Upon aging, the significant spalling of large (Fe,Cr,Co)Sn2 particulates into the solder matrix occurs. Additionally, an extremely large, plate-like (Co,Ni)Sn4 phase forms at a later stage. In contrast, the Sn/FeCoNiMn reaction produces a finer-grained (Fe,Co,Mn)Sn2 phase dispersed in the solder, accompanied by the formation of the large (Co,Ni)Sn4 phase. This observation suggests that Mn promotes the formation of finer intermetallic compounds (IMCs), while Cr facilitates the spalling of larger IMC particulates. The Sn/FeCoNiCrMn system exhibits stable interfacial behavior, with the (Fe,Cr,Co)Sn2 layer showing no significant changes over time. The interfacial behavior and microstructure are primarily governed by the dissolution of the constituent elements and composition ratio of the HEAs, as well as their interactions with Sn. Similar trends are observed in the SAC305 solder reactions, where a larger amount of fine (Fe,Co,Cu)Sn2 particles spall from the interface. This behavior is likely attributed to Cu doping, which enhances nucleation and stabilizes the IMC phases, promoting the formation of finer particles. The wettability of SAC305 solder on MEA/HEA substrates was further evaluated by contact angle measurements. These findings suggest that the presence of Mn in the substrate enhances the wettability of the solder. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

23 pages, 7536 KiB  
Review
A Review of Studies on the Influence of Rare-Earth Elements on the Microstructures and Properties of Copper and Copper Alloys and Relevant Applications
by Jin-Song Liu, Wen-Xin Yu, Da-Yong Chen, Song-Wei Wang, Hong-Wu Song and Shi-Hong Zhang
Metals 2025, 15(5), 536; https://doi.org/10.3390/met15050536 - 12 May 2025
Viewed by 312
Abstract
The rapid advancements in electronics, electric vehicles, and green technologies have imposed increasingly stringent demands on copper-based materials. These requirements include high thermal and electricity conductivity, corrosion resistance, and strength properties at both room temperature and high temperatures. Rare-earth elements are excellent microalloying [...] Read more.
The rapid advancements in electronics, electric vehicles, and green technologies have imposed increasingly stringent demands on copper-based materials. These requirements include high thermal and electricity conductivity, corrosion resistance, and strength properties at both room temperature and high temperatures. Rare-earth elements are excellent microalloying agents due to their typical metallic properties and highly active chemical characteristics; these properties and characteristics enable them to react with almost all elements except noble gases. The addition of rare-earth elements to copper and copper alloys can have several beneficial effects, such as impurity removal, purification, enhancement of the metallographic structure, and improved corrosion resistance. These effects can also raise the heat treatment temperature and enhance plastic processing, thereby further improving the overall properties of copper alloys. This review examines the influence of rare-earth elements (REEs) on copper and its alloys, along with their diverse industrial applications. It was found that elements such as La, Ce, Y, and Nd are commonly added to enhance properties like electrical conductivity, strength, corrosion resistance, purity, and hot workability in alloys such as pure copper, Cu-Ni-Si, Cu-Cr-Zr, and Cu-Fe-P. The review will lay a foundation and provide novel method for the development of advanced copper alloy. Full article
Show Figures

Figure 1

12 pages, 19804 KiB  
Article
Tuning Nanocrystalline Heterostructures for Enhanced Corrosion Resistance: A Study on Electrodeposited Ni Coatings
by Wenyi Huo, Zeling Zhang, Xuhong Huang, Yueheng Wang, Shiqi Wang, Xiaoheng Lu, Shuangxiao Li, Senlei Zhu, Feng Fang and Jianqing Jiang
Coatings 2025, 15(5), 534; https://doi.org/10.3390/coatings15050534 - 30 Apr 2025
Viewed by 355
Abstract
Tailoring the microstructural heterogeneity of metallic coatings is a promising strategy for enhancing their corrosion resistance; however, its systematic optimization remains underexplored. Here in, we present a one-step, scalable electrodeposition strategy to fabricate Ni coatings with tunable nanocrystalline heterostructures on Cu substrates by [...] Read more.
Tailoring the microstructural heterogeneity of metallic coatings is a promising strategy for enhancing their corrosion resistance; however, its systematic optimization remains underexplored. Here in, we present a one-step, scalable electrodeposition strategy to fabricate Ni coatings with tunable nanocrystalline heterostructures on Cu substrates by varying the current density from 1 mA/cm2 to 50 mA/cm2. The coating with a current density of 10 mA/cm2, featuring a heterogeneous nanograin structure of coexisting small and large grains, exhibited optimal corrosion resistance in 3.5 wt.% NaCl solution, with a low self-corrosion current density of 4.48 µA/cm2. Electrochemical impedance spectroscopy (EIS) and molecular dynamics (MD) simulations revealed that the heterostructure dispersed Cl adsorption sites and promoted passivation. High-resolution transmission electron microscopy (HRTEM) revealed that as the current density increased from 10 mA/cm2 to 50 mA/cm2, the corrosion product transitioned from a crystalline NiOOH structure to an amorphous structure, which correlated with a reduced corrosion resistance. The heterogeneous microstructure enhances durability, offering a cost-effective and alloy-free alternative for offshore applications. These findings provide a theoretical and experimental basis for designing advanced corrosion-resistant coatings. Full article
Show Figures

Figure 1

12 pages, 6390 KiB  
Article
Exploring How Dopants Strengthen Metal-Ni/Ceramic-Al2O3 Interface Structures at the Atomic and Electronic Levels
by Fengqiao Sun, Xiaofeng Zhang, Long Li, Qicheng Chen, Dehao Kong, Haifeng Yang and Renwei Li
Molecules 2025, 30(9), 1990; https://doi.org/10.3390/molecules30091990 - 29 Apr 2025
Viewed by 245
Abstract
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density [...] Read more.
The metal-based/ceramic interface structure is a key research focus in science, and addressing the stability of the interface has significant scientific importance as well as economic value. In this project, the work of adhesion, heat of segregation, electronic structure, charge density, and density of states for doped-M (M = Ti, Mg, Cu, Zn, Si, Mn, or Al) Ni (111)/Al2O3 (0001) interface structures are studied using first-principle calculation methods. The calculation results demonstrate that doping Ti and Mg can increase the bonding strength of the Ni–Al2O3 interface by factors of 3.4 and 1.5, respectively. However, other dopants, such as Si, Mn, and Al, have a negative effect on the bonding of the Ni–Al2O3 interface. As a result, the alloying elements may be beneficial to the bonding of the Ni–Al2O3 interface, but they may also play an opposite role. Moreover, the Ti and Mg dopants segregate from the matrix and move to the middle position of the Ni–Al2O3 interface during relaxation, while other dopants exhibit a slight segregation and solid solution in the matrix. Most remarkably, the segregation behavior of Ti and Mg induced electron transfer to the middle of the interface, thereby increasing the charge density of the Ni–Al2O3 interface. For the optimal doped-Ti Ni–Al2O3 interface, bonds of Ti–O and Ti–Ni are found, which indicates that the dopant Ti generates stable compounds in the interface region, acting as a stabilizer for the interface. Consequently, selecting Ti as an additive in the fabrication of metal-based ceramic Ni–Al2O3 composites will contribute to prolonging the service lifetime of the composite. Full article
Show Figures

Graphical abstract

13 pages, 5096 KiB  
Article
Quantitative Study of Internal Defects in Copper Iron Alloy Materials Using Computed Tomography
by Junli Guo, Qiang Hu and Kai Hu
Alloys 2025, 4(2), 8; https://doi.org/10.3390/alloys4020008 - 29 Apr 2025
Viewed by 160
Abstract
Semi-continuous casting is an important method for the large-scale production of high-strength conductive copper-iron (Cu-Fe) alloys in the future. However, serious peeling defects were found on the surface of cold-rolled strips during industrial trials. Due to the multi-step complexity of the manufacturing process [...] Read more.
Semi-continuous casting is an important method for the large-scale production of high-strength conductive copper-iron (Cu-Fe) alloys in the future. However, serious peeling defects were found on the surface of cold-rolled strips during industrial trials. Due to the multi-step complexity of the manufacturing process (from casting to final product), identifying the root cause of defect formation remains challenging. X-ray computed tomography (X-CT) was used to quantitatively characterize the pores and defects in the horizontal continuous casting Cu-Ni-Sn slab, the semi-continuous casting Cu-Fe alloy slab, and the hot-rolled slab of Cu-Fe, and the relationship between the defect characteristics and processes was analyzed. The results showed that the internal defect sphericity distribution of the Cu-Fe alloy slab after hot rolling was similar to that of the reference Cu-Ni-Sn slab. The main difference lies in the low sphericity range (<0.4). The volume of pore defects inside the Cu-Fe alloy after hot rolling was significantly larger than in the reference sample, with a 52-fold volume difference. This phenomenon may be the source of surface-peeling defects in the subsequent cold-rolling process. The occurrence of internal defects in the Cu-Fe alloy is related to both the composition characteristics and casting processes of the Cu-Fe alloy; on the other hand, it is also related to the hot-rolling process. Full article
Show Figures

Figure 1

Back to TopTop