Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Cyvirus anguillidallo 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9291 KB  
Article
Development Using Bioluminescence Imaging of a Recombinant Anguillid Herpesvirus 1 Vaccine Candidate Associated with Normal Replication In Vitro but Abortive Infection In Vivo
by Haiyan Zhang, Arun Sridhar, Natacha Delrez, Bo He, Sophie Fourny, Yuan Gao, Owen Donohoe and Alain F. C. Vanderplasschen
Vaccines 2024, 12(12), 1423; https://doi.org/10.3390/vaccines12121423 - 17 Dec 2024
Cited by 2 | Viewed by 1357
Abstract
Background/Objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic [...] Read more.
Background/Objectives: Anguillid herpesvirus 1 (AngHV-1) (recently renamed Cyvirus anguillidallo 1) is the etiologic agent of a lethal disease that affects several eel species. It is thought to be one of the main infectious agents causing a population decline in wild eels and economic loss within the eel aquaculture sector. To date, no vaccines are available against AngHV-1. Recently, we developed a safe and efficacious live attenuated recombinant vaccine against Cyprinid herpesvirus 3 (CyHV-3). This CyHV-3 recombinant vaccine encodes a deletion of ORF57. Orthologues of CyHV-3 ORF57 exist in Cyprinid herpesvirus 2 (CyHV-2, ORF57) and AngHV-1 (ORF35). Methods: In the present study, using recombinant strains and bioluminescent in vivo imaging, we investigated the effect of AngHV-1 ORF35 deletion on virus replication in vitro, virulence in vivo, and the potential of an AngHV-1 ORF35-deleted recombinant as a vaccine candidate for the mass vaccination of eels by immersion. With this goal in mind, we produced ORF35-deleted recombinants using two parental strains: a UK strain and a recombinant derived from the former strain by insertion of a Luciferase–GFP reporter cassette into a non-coding intergenic region. Results: Analyses of ORF35-deleted recombinants led to the following observations: (i) AngHV-1 ORF35 is not essential for viral growth in cell culture, and its deletion does not affect the production of extracellular virions despite reducing the size of viral plaque. (ii) In contrast to what has been observed for CyHV-3 ORF57 and CyHV-2 ORF57, in vivo bioluminescent analyses revealed that AngHV-1 ORF35 is an essential virulence factor and that its deletion led to abortive infection in vivo. (iii) Inoculation of the AngHV-1 ORF35-deleted recombinant by immersion induced a protective immune response against a wild-type challenge. This protection was shown to be dose-dependent and to rely on the infectivity of AngHV-1 ORF35-deleted virions. Conclusions: This study suggests that the AngHV-1 ORF35 protein has singular properties compared to its orthologues encoded by CyHV-2 and CyHV-3. It also supports the potential of AngHV-1 ORF35-deleted recombinants for the mass vaccination of eels by immersion. Full article
(This article belongs to the Special Issue Animal Herpesviruses)
Show Figures

Graphical abstract

Back to TopTop