Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (563)

Search Parameters:
Keywords = DC-link voltage control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 38336 KB  
Article
Control and Design of a Quasi-Y-Source Inverter for Vehicle-to-Grid Applications in Virtual Power Plants
by Rafael Santos, Guilherme Gomes Leite and Flávio Alessandro Serrão Gonçalves
Processes 2025, 13(9), 2800; https://doi.org/10.3390/pr13092800 - 1 Sep 2025
Abstract
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power [...] Read more.
This paper proposes a design and control methodology for a Quasi-Y-Source impedance source inverter (QS-YSI) as a power electronics interface for Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) applications in the context of virtual power plants (VPPs). The work presents an analysis of bidirectional power transfer using Electric Vehicles (EVs) to supply power to the utility grid, businesses, and homes, thereby acting as distributed energy resources. The proposed QS-YSI topology supports both V2G and G2V operation while providing reactive power compensation and enabling the decoupled tracking of active power (P) and reactive power (Q), demonstrating the capability of EVs to return energy to the grid and to provide ancillary services such as power factor correction. The key contributions are a detailed control design methodology that includes pulsating DC-link voltage regulation, inverter output current reference tracking in the synchronous dq reference frame considering DC-link voltage dynamics, and a modified Pulse Width Modulation (PWM) technique for effective decoupling of DC link and inverter output current control. Finally, the feasibility and validity of the proposed approach are demonstrated through simulations of the complete system under nominal conditions and experiments conducted considering a small-scale prototype. Full article
(This article belongs to the Special Issue Advances in Power Converters in Energy and Microgrid Systems)
Show Figures

Figure 1

21 pages, 1634 KB  
Review
A Comprehensive Review of Condition Monitoring Technologies for Modular Multilevel Converter (MMC) HVDC Systems
by Zhoufei Yao, Xing Lei and Xizhou Du
Electronics 2025, 14(17), 3462; https://doi.org/10.3390/electronics14173462 - 29 Aug 2025
Viewed by 215
Abstract
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study [...] Read more.
This paper provides an in-depth review of degradation mechanisms and condition monitoring methods for critical components in modular multilevel converter (MMC) high-voltage direct current (HVDC) systems, including insulated gate bipolar transistors (IGBTs), metallized film capacitors, and cross-linked polyethylene (XLPE) DC cables. This study systematically evaluates the strengths and limitations of existing technologies, while also projecting future trends in technological advancements. By exploring the multi-fields-coupled degradation processes of these components, the mechanisms of switching oscillations, and the flexible and controllable applications of MMC, this review offers valuable insights for improving the accuracy, real-time performance, and reliability of component condition monitoring. The findings aim to contribute to the advancement and broader application of MMC HVDC systems in modern power networks. Full article
Show Figures

Figure 1

22 pages, 3601 KB  
Article
Support-Vector-Regression-Based Intelligent Control Strategy for DFIG Wind Turbine Systems
by Farhat Nasim, Shahida Khatoon, Ibraheem Nasiruddin, Mohammad Shahid, Shabana Urooj and Basel Bilal
Machines 2025, 13(8), 687; https://doi.org/10.3390/machines13080687 - 5 Aug 2025
Viewed by 486
Abstract
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause [...] Read more.
Achieving sustainable energy goals requires efficient integration of renewables like wind energy. Doubly fed induction generator (DFIG)-based wind turbine systems (WTSs) operate efficiently across a range of speeds, making them well-suited for modern renewable energy systems. However, sudden wind speed variations can cause power oscillations, rotor speed fluctuations, and voltage instability. Traditional proportional–integral (PI) controllers struggle with such nonlinear, rapidly changing scenarios. A control approach utilizing support vector regression (SVR) is proposed for the DFIG wind turbine system. The SVR controller manages both active and reactive power by simultaneously controlling the rotor- and grid-side converters (RSC and GSC). Simulations under a sudden wind speed variation from 10 to 12 m per second show the SVR approach reduces settling time significantly (up to 70.3%), suppresses oscillations in rotor speed, torque, and power output, and maintains over 97% DC-link voltage stability. These improvements enhance power quality, reliability, and system performance, demonstrating the SVR controller’s superiority over conventional PI methods for variable-speed wind energy systems. Full article
(This article belongs to the Special Issue Modelling, Design and Optimization of Wind Turbines)
Show Figures

Figure 1

19 pages, 9300 KB  
Article
Decoupling Control for the HVAC Port of Power Electronic Transformer
by Wusong Wen, Tianwen Zhan, Yingchao Zhang and Jintong Nie
Energies 2025, 18(15), 4131; https://doi.org/10.3390/en18154131 - 4 Aug 2025
Viewed by 345
Abstract
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to [...] Read more.
For the high-voltage AC port of power electronic transformer (HVAC-PET) with three-phase independent DC buses on the low-voltage side, a decoupling control strategy, concerning the influence of grid voltage imbalance, three-phase active-load imbalance, and high-order harmonic distortion, is proposed in this paper to simultaneously realize the functions of active power control, reactive power compensation, and active power filtering. In the outer power control loop, according to the distribution rule of decoupled average active power components in three phases, stability control for the sum of cluster average active power flows is realized by injecting positive-sequence active current, so as to control the average cluster voltage (i.e., the average of all the DC-link capacitor voltages), and by injecting negative-sequence current, the cluster average active power flows can be controlled individually to balance the three cluster voltages (i.e., the average of the DC-link capacitor voltages in each cluster). The negative-sequence reactive power component is considered to realize the reactive power compensation. In the inner current control loop, the fundamental and high-order harmonic components are uniformly controlled in the positive-sequence dq frame using the PI + VPIs (vector proportional integral) controller, and the harmonic filtering function is realized while the fundamental positive-sequence current is adjusted. Experiments performed on the 380 V/50 kVA laboratory HVAC-PET verify the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

23 pages, 4451 KB  
Article
Energy Management and Power Distribution for Battery/Ultracapacitor Hybrid Energy Storage System in Electric Vehicles with Regenerative Braking Control
by Abdelsalam A. Ahmed, Young Il Lee, Saleh Al Dawsari, Ahmed A. Zaki Diab and Abdelsalam A. Ezzat
Math. Comput. Appl. 2025, 30(4), 82; https://doi.org/10.3390/mca30040082 - 3 Aug 2025
Viewed by 656
Abstract
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking [...] Read more.
This paper presents an advanced energy management system (EMS) for optimizing power distribution in a battery/ultracapacitor (UC) hybrid energy storage system (HESS) for electric vehicles (EVs). The proposed EMS accounts for all energy flow scenarios within a practical driving cycle. A regenerative braking control strategy is developed to maximize kinetic energy recovery using an induction motor, efficiently distributing the recovered energy between the UC and battery. Additionally, a power flow management approach is introduced for both motoring (discharge) and braking (charge) operations via bidirectional buck–boost DC-DC converters. In discharge mode, an optimal distribution factor is dynamically adjusted to balance power delivery between the battery and UC, maximizing efficiency. During charging, a DC link voltage control mechanism prioritizes UC charging over the battery, reducing stress and enhancing energy recovery efficiency. The proposed EMS is validated through simulations and experiments, demonstrating significant improvements in vehicle acceleration, energy efficiency, and battery lifespan. Full article
(This article belongs to the Special Issue Applied Optimization in Automatic Control and Systems Engineering)
Show Figures

Figure 1

22 pages, 6031 KB  
Article
Enhancement of Power Quality in Photovoltaic Systems for Weak Grid Connections
by Pankaj Kumar Sharma, Pushpendra Singh, Sharat Chandra Choube and Lakhan Singh Titare
Energies 2025, 18(15), 4066; https://doi.org/10.3390/en18154066 - 31 Jul 2025
Viewed by 405
Abstract
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, [...] Read more.
This paper proposes a novel control strategy for a dual-stage grid-connected solar photovoltaic (PV) system designed to ensure reliable and efficient operation under unstable grid conditions. The strategy incorporates a Phase-Locked Loop (PLL)-based positive sequence estimator for accurate detection of grid voltage disturbances, including sags, swells, and fluctuations in solar irradiance. A dynamic DC-link voltage regulation mechanism is employed to minimize converter power losses and enhance the performance of the Voltage Source Converter (VSC) under weak grid scenarios. The control scheme maintains continuous maximum power point tracking (MPPT) and unity power factor (UPF) operation, thereby improving overall grid power quality. The proposed method is validated through comprehensive simulations and real-time hardware implementation using the OPAL-RT OP4510 platform. The results demonstrate compliance with IEEE Standard 519, confirming the effectiveness and robustness of the proposed strategy. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 6870 KB  
Article
Stability Limit Analysis of DFIG Connected to Weak Grid in DC-Link Voltage Control Timescale
by Kezheng Jiang, Lie Li, Zhenyu He and Dan Liu
Electronics 2025, 14(15), 3022; https://doi.org/10.3390/electronics14153022 - 29 Jul 2025
Viewed by 294
Abstract
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines [...] Read more.
In some areas, such as Gansu in China and Texas in the USA, lots of wind power bases are located far away from load centers. Transmitting large amounts of wind power to load centers through long transmission lines will lead to wind turbines being integrated into a weak grid, which decreases the stability limits of wind turbines. To solve this problem, this study investigates the stability limits of a Doubly Fed Induction Generator (DFIG) connected to a weak grid in a DC-link voltage control timescale. To start with, a model of the DFIG in a DC-link voltage control timescale is presented for stability limit analysis, which facilitates profound physical understanding. Through steady-state stability analysis based on sensitivity evaluation, it is found that the critical factor restricting the stability limit of the DFIG connected to a weak grid is ∂Pe/∂ (−ird), changing from positive to negative. As ∂Pe/∂ (−ird) reaches zero, the system reaches its stability limit. Furthermore, by considering control loop dynamics and grid strength, the stability limit of the DFIG is investigated based on eigenvalue analysis with multiple physical scenarios. The results of root locus analysis show that, when the DFIG is connected to an extremely weak grid, reducing the bandwidth of the PLL or increasing the bandwidth of the AVC with equal damping can increase the stability limit. The aforesaid theoretical analysis is verified through both time domain simulation and physical experiments. Full article
Show Figures

Figure 1

27 pages, 3529 KB  
Article
Coordinated Sliding Mode and Model Predictive Control for Enhanced Fault Ride-Through in DFIG Wind Turbines
by Ahmed Muthanna Nori, Ali Kadhim Abdulabbas and Tawfiq M. Aljohani
Energies 2025, 18(15), 4017; https://doi.org/10.3390/en18154017 - 28 Jul 2025
Viewed by 331
Abstract
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. [...] Read more.
This work proposes an effective control technique for enhancing the stability of Doubly Fed Induction Generator-Based Wind Turbines (DFIG-WTs) connected to the grid during voltage sag and swell events, ensuring the reliable and efficient operation of wind energy systems integrated with the grid. The proposed approach integrates a Dynamic Voltage Restorer (DVR) in series with a Wind Turbine Generator (WTG) output terminal to enhance the Fault Ride-Through (FRT) capability during grid disturbances. To develop a flexible control strategy for both unbalanced and balanced fault conditions, a combination of feedforward and feedback control based on a sliding mode control (SMC) for DVR converters is used. This hybrid strategy allows for precise voltage regulation, enabling the series compensator to inject the required voltage into the grid, thereby ensuring constant generator terminal voltages even during faults. The SMC enhances the system’s robustness by providing fast, reliable regulation of the injected voltage, effectively mitigating the impact of grid disturbances. To further enhance system performance, Model Predictive Control (MPC) is implemented for the Rotor-Side Converter (RSC) within the back-to-back converter (BTBC) configuration. The main advantages of the predictive control method include eliminating the need for linear controllers, coordinate transformations, or modulators for the converter. Additionally, it ensures the stable operation of the generator even under severe operating conditions, enhancing system robustness and dynamic response. To validate the proposed control strategy, a comprehensive simulation is conducted using a 2 MW DFIG-WT connected to a 120 kV grid. The simulation results demonstrate that the proposed control approach successfully limits overcurrent in the RSC, maintains electromagnetic torque and DC-link voltage within their rated values, and dynamically regulates reactive power to mitigate voltage sags and swells. This allows the WTG to continue operating at its nominal capacity, fully complying with the strict requirements of modern grid codes and ensuring reliable grid integration. Full article
Show Figures

Figure 1

26 pages, 4627 KB  
Article
A Low-Voltage Back-to-Back Converter Interface for Prosumers in a Multifrequency Power Transfer Environment
by Zaid Ali, Hamed Athari and David Raisz
Appl. Sci. 2025, 15(15), 8340; https://doi.org/10.3390/app15158340 - 26 Jul 2025
Viewed by 353
Abstract
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic [...] Read more.
The research demonstrates, through simulation and laboratory validation, the development of a low-voltage DC-link (LVDC) back-to-back converter system that enables multi-frequency power transfer. The system operates in two distinct modes, which include a three-phase grid-connected converter transferring fundamental and 5th and 7th harmonic power to a three-phase residential inverter supplying a clean 50 Hz load and another mode that uses a DC–DC buck–boost converter to integrate a battery storage unit for single-phase load supply. The system allows independent control of each harmonic component and maintains a clean sinusoidal voltage at the load side through DC-link isolation. The LVDC link functions as a frequency-selective barrier to suppress non-standard harmonic signals on the load side, effectively isolating the multi-frequency power grid from standard-frequency household loads. The proposed solution fills the gap between the multi-frequency power systems and the single-frequency loads because it allows the transfer of total multi-frequency grid power to the traditional household loads with pure fundamental frequency. Experimental results and simulation outcomes demonstrate that the system achieves high efficiency, robust harmonic isolation, and dynamic adaptability when load conditions change. Full article
(This article belongs to the Special Issue Power Electronics: Control and Applications)
Show Figures

Figure 1

15 pages, 4614 KB  
Article
Energy-Efficient Current Control Strategy for Drive Modules of Permanent Magnetic Actuators
by Hyoung-Kyu Yang, Jin-Seok Kim and Jin-Hong Kim
Electronics 2025, 14(15), 2972; https://doi.org/10.3390/electronics14152972 - 25 Jul 2025
Viewed by 277
Abstract
This paper proposes an energy-efficient current control strategy for drive modules of permanent magnetic actuators (PMAs) to reduce the cost and volume of DC-link capacitors. The drive module of the PMA does not receive the input power from an external power source during [...] Read more.
This paper proposes an energy-efficient current control strategy for drive modules of permanent magnetic actuators (PMAs) to reduce the cost and volume of DC-link capacitors. The drive module of the PMA does not receive the input power from an external power source during operation. Instead, the externally charged DC-link capacitors are used as internal backup power sources to guarantee the reliable operation even in the case of an emergency. Therefore, it is important to use the charged energy efficiently within the limited DC-link capacitors. However, conventional control strategies using a voltage open loop have trouble reducing the energy waste. This is because the drive module with the voltage open loop uses unnecessary energy even after the PMA mover has finished its movement. To figure it out, the proposed control strategy adopts a current control loop to save energy even if the displacement of the PMA mover is unknown. In addition, the proposed strategy can ensure the successful operation of the PMA by using the driving force analysis. The efficacy of the proposed strategy is verified through the experimental test. It would be expected that the proposed strategy can reduce the cost and volume of the PMA drive system. Full article
Show Figures

Figure 1

32 pages, 10857 KB  
Article
Improved Fault Resilience of GFM-GFL Converters in Ultra-Weak Grids Using Active Disturbance Rejection Control and Virtual Inertia Control
by Monigaa Nagaboopathy, Kumudini Devi Raguru Pandu, Ashmitha Selvaraj and Anbuselvi Shanmugam Velu
Sustainability 2025, 17(14), 6619; https://doi.org/10.3390/su17146619 - 20 Jul 2025
Viewed by 655
Abstract
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair [...] Read more.
Enhancing the resilience of renewable energy systems in ultra-weak grids is crucial for promoting sustainable energy adoption and ensuring a reliable power supply during disturbances. Ultra-weak grids characterized by a very low Short-Circuit Ratio, less than 2, and high grid impedance significantly impair voltage and frequency stability, imposing challenging conditions for Inverter-Based Resources. To address these challenges, this paper considers a 110 KVA, three-phase, two-level Voltage Source Converter, interfacing a 700 V DC link to a 415 V AC ultra-weak grid. X/R = 1 is controlled using Sinusoidal Pulse Width Modulation, where the Grid-Connected Converter operates in Grid-Forming Mode to maintain voltage and frequency stability under a steady state. During symmetrical and asymmetrical faults, the converter transitions to Grid-Following mode with current control to safely limit fault currents and protect the system integrity. After fault clearance, the system seamlessly reverts to Grid-Forming Mode to resume voltage regulation. This paper proposes an improved control strategy that integrates voltage feedforward reactive power support and virtual capacitor-based virtual inertia using Active Disturbance Rejection Control, a robust, model-independent controller, which rapidly rejects disturbances by regulating d and q-axes currents. To test the practicality of the proposed system, real-time implementation is carried out using the OPAL-RT OP4610 platform, and the results are experimentally validated. The results demonstrate improved fault current limitation and enhanced DC link voltage stability compared to a conventional PI controller, validating the system’s robust Fault Ride-Through performance under ultra-weak grid conditions. Full article
Show Figures

Figure 1

21 pages, 4452 KB  
Article
Periodic Power Fluctuation Smoothing Control Using Blade Inertia and DC-Link Capacitor in Variable-Speed Wind Turbine
by Jin-Ho Do, Ye-Chan Kim and Seung-Ho Song
Energies 2025, 18(14), 3763; https://doi.org/10.3390/en18143763 - 16 Jul 2025
Viewed by 244
Abstract
Due to the structural aspects of the wind turbine, such as wind shear and tower shadow effects, the output power of the wind turbine has periodic fluctuations, known as 3P fluctuations. These fluctuations can reduce overall power generation and deteriorate power quality. In [...] Read more.
Due to the structural aspects of the wind turbine, such as wind shear and tower shadow effects, the output power of the wind turbine has periodic fluctuations, known as 3P fluctuations. These fluctuations can reduce overall power generation and deteriorate power quality. In this context, this paper proposes a power smoothing control method that utilizes rotor inertia and a DC-link capacitor as small-scale energy storage devices. First, the typical energy storage capacities of the rotor’s rotational kinetic energy and the DC-link capacitor’s electrostatic energy are analyzed to assess their smoothing potential. Secondly, a control method is presented to apply the rotor and the DC-link capacitor as small-scale energy storage, with the smoothing frequency range allocated according to their respective storage capacities. Finally, the proposed method is compared with the conventional maximum power point tracking (MPPT) method and the 3P-notch filter method. The effectiveness of the proposed algorithm is verified through MATLAB/Simulink simulations, demonstrating its capability to mitigate periodic power fluctuations. The results showed that the proposed control method is applicable, reliable, and effective in mitigating periodic power fluctuations. Full article
Show Figures

Figure 1

22 pages, 3393 KB  
Article
Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty
by Changhee Han, Sungyoon Song and Jaehyeong Lee
Electronics 2025, 14(13), 2737; https://doi.org/10.3390/electronics14132737 - 7 Jul 2025
Viewed by 308
Abstract
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and [...] Read more.
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and reliability of the power distribution. Given the inherent uncertain characteristics associated with forecasting errors in photovoltaic (PV) generation and load demand, the study employs a distributionally robust chance-constrained optimization technique to mitigate the potential operational risks. To achieve a cooperative and optimized control strategy for MVDC link systems and BESS, the proposed method incorporates a stochastic relaxation of the reliability constraints on bus voltages. By strategically adjusting the conservativeness of these constraints, the proposed framework seeks to maximize the cost-effectiveness of DN operations. The numerical simulations demonstrate that relaxing the strict reliability constraints enables the distribution system operator to optimize the electricity imports more economically, thereby improving the overall financial performance while maintaining system reliability. Through case studies, we showed that the proposed method improves the operational cost by up to 44.7% while maintaining 96.83% bus voltage reliability under PV and load power output uncertainty. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

23 pages, 11166 KB  
Article
Small-Signal Input Impedance Modeling of PWM Induction Motor Drives and Interactive Stability Assessment with DC Link
by Dirui Yang, Zhewen Kan, Yuewu Wang, Wenlong Ren, Yebin Yang and Kun Xia
Machines 2025, 13(7), 580; https://doi.org/10.3390/machines13070580 - 4 Jul 2025
Viewed by 478
Abstract
DC link power supply systems that integrate power electronic converters are increasingly being adopted. In particular, emerging “source–load” systems, in which the DC link interfaces with converters, have attracted increasing research interest due to concerns about power quality and system stability. This paper [...] Read more.
DC link power supply systems that integrate power electronic converters are increasingly being adopted. In particular, emerging “source–load” systems, in which the DC link interfaces with converters, have attracted increasing research interest due to concerns about power quality and system stability. This paper addresses mid- and low-frequency oscillation issues in DC link voltage supplied induction motor drives (IMDs). It begins by constructing a multiple-input multiple-output (MIMO) state-space model of the induction motor. For the first time, the dq-axis control system is represented as an equivalent admittance model that forms two single-input single-output (SISO) loops. The PI controller and induction motor are integrated into the inverter’s input impedance model; Furthermore, the effectiveness and accuracy of the derived impedance model are experimentally validated under various operating conditions of the induction motor using a custom-built test platform. The experimental results offer a practical reference for system enhancement and stability evaluation. Full article
Show Figures

Figure 1

23 pages, 6307 KB  
Article
Enhanced Sliding Mode Control for Dual MPPT Systems Integrated with Three-Level T-Type PV Inverters
by Farzaneh Bagheri, Jakson Bonaldo, Naki Guler, Marco Rivera, Patrick Wheeler and Rogerio Lima
Energies 2025, 18(13), 3344; https://doi.org/10.3390/en18133344 - 26 Jun 2025
Viewed by 496
Abstract
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L [...] Read more.
Dual Maximum Power Point Tracking (MPPT) inverters are essential in residential and small commercial solar power systems, optimizing power extraction from two independent solar panel arrays to enhance efficiency and energy harvesting. On the other hand, the Three-Level T-Type Voltage Source Inverter (3L T-Type VSI) is known for its reduced switching losses, improved harmonic distortion, and reduced part count in comparison to other three-level topologies. In this paper, a novel architecture is proposed to integrate the dual MPPT structure directly to each DC-side split capacitor of the 3L T-Type VSI, taking advantage of the intrinsic characteristics of the inverter’s topology. Further performance enhancement is achieved by integrating a classical MPPT strategy to the control framework to make it feasible for a real-case grid integration. The combination of these methods ensures faster and stable tracking under dynamic irradiance conditions. Considering that strategies dedicated to balancing the DC-link capacitor’s voltage slightly affect the AC-side current waveform, an enhanced sliding mode control (SMC) strategy tailored for dual MPPT and 3L T-Type VSI is deployed, combining the simplicity of conventional PI controllers used in the independent MPPT-based DC-DC converters with the superior robustness and dynamic performance of SMC. Real-time results obtained using the OPAL-RT Hardware-in-the-Loop platform validated the performance of the proposed control strategy under realistic test scenarios. The current THD was maintained below 4.8% even under highly distorted grid conditions, and the controller achieved a steady state within approximately 15 ms following perturbations in the DC-link voltage, sudden irradiance variations, and voltage sags and swells. Additionally, the power factor remained unitary, enhancing power transfer from the renewable source to the grid. The proposed system was able to achieve efficient power extraction while maintaining high power quality (PQ) standards for the output, positioning it as a practical and flexible solution for advanced solar PV systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

Back to TopTop