Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = DNA minor groove binder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6104 KiB  
Article
Copper(II) and Zinc(II) Complexes with Bacterial Prodigiosin Are Targeting Site III of Bovine Serum Albumin and Acting as DNA Minor Groove Binders
by Lena Pantelic, Sanja Skaro Bogojevic, Tina P. Andrejević, Bojana V. Pantović, Violeta R. Marković, Darko P. Ašanin, Žiko Milanović, Tatjana Ilic-Tomic, Jasmina Nikodinovic-Runic, Biljana Đ. Glišić and Jelena Lazic
Int. J. Mol. Sci. 2024, 25(15), 8395; https://doi.org/10.3390/ijms25158395 - 1 Aug 2024
Cited by 3 | Viewed by 1521
Abstract
The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries’ approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising [...] Read more.
The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries’ approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 3542 KiB  
Article
Development of a Sensitive, Easy and High-Throughput Compliant Protocol for Maize and Soybean DNA Extraction and Quantitation Using a Plant-Specific Universal Taqman Minor Groove Binder Probe
by Roberto Ambra, Marco Marcelli and Fabio D’Orso
Genes 2023, 14(9), 1797; https://doi.org/10.3390/genes14091797 - 14 Sep 2023
Cited by 1 | Viewed by 1648
Abstract
We report the optimization of a high-throughput, compliant DNA extraction method that uses standard format 96-well plates and a commercial automated DNA purification system (ABI PRISM® 6100 Nucleic Acid PrepStation). The procedure was set up for maize and soybean, the most common [...] Read more.
We report the optimization of a high-throughput, compliant DNA extraction method that uses standard format 96-well plates and a commercial automated DNA purification system (ABI PRISM® 6100 Nucleic Acid PrepStation). The procedure was set up for maize and soybean, the most common GMO crops and the main ingredients of several foodstuffs, and compared with an EU-validated CTAB-based method. Optimization of the DNA extraction was achieved by applying self-prepared buffers (for DNA extraction, binding, and washing) on the PrepStation loaded with proprietary glass-fiber-coated purification plates. Quantification of extracted DNA was performed by real-time PCR using previously reported endogenous soybean lectin and maize starch synthase genes and a novel plant-specific universal TaqMan MGB probe that targets the 18S rRNA multiple copy gene. Using serial dilutions of both maize and soybean genomic DNAs, we show low PCR sensitivity and efficiency for the official TransPrep DNA extraction protocol compared to the CTAB-based one. On the other hand, using serial dilutions of a standard reference plasmid containing a 137 bp sequence cloned from the 18S rRNA plant-specific ribosomal gene, we demonstrate the high PCR sensitivity and efficiency of the optimized DNA extraction protocol setup with self-prepared buffers. The limits of detection and quantification of the 18S rDNA reiteration were consistent with the calculated values, supporting the suitability of the DNA extraction procedure for high-throughput analyses of large populations and small amounts of tissue. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5896 KiB  
Article
DNA Binding and Cleavage, Stopped-Flow Kinetic, Mechanistic, and Molecular Docking Studies of Cationic Ruthenium(II) Nitrosyl Complexes Containing “NS4” Core
by Hadeer A. Shereef, Yasmine S. Moemen, Fawzia I. Elshami, Ahmed M. El-Nahas, Shaban Y. Shaban and Rudi van Eldik
Molecules 2023, 28(7), 3028; https://doi.org/10.3390/molecules28073028 - 28 Mar 2023
Cited by 6 | Viewed by 2333
Abstract
This work aimed to evaluate in vitro DNA binding mechanistically of cationic nitrosyl ruthenium complex [RuNOTSP]+ and its ligand (TSPH2) in detail, correlate the findings with cleavage activity, and draw conclusions about the impact of the metal center. Theoretical studies [...] Read more.
This work aimed to evaluate in vitro DNA binding mechanistically of cationic nitrosyl ruthenium complex [RuNOTSP]+ and its ligand (TSPH2) in detail, correlate the findings with cleavage activity, and draw conclusions about the impact of the metal center. Theoretical studies were performed for [RuNOTSP]+, TSPH2, and its anion TSP−2 using DFT/B3LYP theory to calculate optimized energy, binding energy, and chemical reactivity. Since nearly all medications function by attaching to a particular protein or DNA, the in vitro calf thymus DNA (ctDNA) binding studies of [RuNOTSP]+ and TSPH2 with ctDNA were examined mechanistically using a variety of biophysical techniques. Fluorescence experiments showed that both compounds effectively bind to ctDNA through intercalative/electrostatic interactions via the DNA helix’s phosphate backbone. The intrinsic binding constants (Kb), (2.4 ± 0.2) × 105 M−1 ([RuNOTSP]+) and (1.9 ± 0.3) × 105 M−1 (TSPH2), as well as the enhancement dynamic constants (KD), (3.3 ± 0.3) × 104 M−1 ([RuNOTSP]+) and (2.6 ± 0.2) × 104 M−1 (TSPH2), reveal that [RuNOTSP]+ has a greater binding propensity for DNA compared to TSPH2. Stopped-flow investigations showed that both [RuNOTSP]+ and TSPH2 bind through two reversible steps: a fast second-order binding, followed by a slow first-order isomerization reaction via a static quenching mechanism. For the first and second steps of [RuNOTSP]+ and TSPH2, the detailed binding parameters were established. The total binding constants for [RuNOTSP]+ (Ka = 43.7 M−1, Kd = 2.3 × 10−2 M−1, ΔG0 = −36.6 kJ mol−1) and TSPH2 (Ka = 15.1 M−1, Kd = 66 × 10−2 M, ΔG0 = −19 kJ mol−1) revealed that the relative reactivity is approximately ([RuNOTSP]+)/(TSPH2) = 3/1. The significantly negative ΔG0 values are consistent with a spontaneous binding reaction to both [RuNOTSP]+ and TSPH2, with the former being very favorable. The findings showed that the Ru(II) center had an effect on the reaction rate but not on the mechanism and that the cationic [RuNOTSP]+ was a more highly effective DNA binder than the ligand TSPH2 via strong electrostatic interaction with the phosphate end of DNA. Because of its higher DNA binding affinity, cationic [RuNOTSP]+ demonstrated higher cleavage efficiency towards the minor groove of pBR322 DNA via the hydrolytic pathway than TSPH2, revealing the synergy effect of TSPH2 in the form of the complex. Furthermore, the mode of interaction of both compounds with ctDNA has also been supported by molecular docking. Full article
(This article belongs to the Special Issue Chemical Kinetics in Metal Complexes)
Show Figures

Figure 1

12 pages, 1810 KiB  
Article
A TaqMan® Assay Allows an Accurate Detection and Quantification of Fusarium spp., the Causal Agents of Tomato Wilt and Rot Diseases
by Maria Doroteia Campos, Carla Varanda, Mariana Patanita, Joana Amaro Ribeiro, Catarina Campos, Patrick Materatski, André Albuquerque and Maria do Rosário Félix
Biology 2023, 12(2), 268; https://doi.org/10.3390/biology12020268 - 8 Feb 2023
Cited by 1 | Viewed by 2353
Abstract
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other [...] Read more.
In tomato plants, Fusarium spp. have been increasingly associated with several wilt and rot diseases that are responsible for severe yield losses. Here, we present a real-time PCR TaqMan® MGB (Minor Groove Binder) assay to detect and discriminate Fusarium spp. from other fungal species that affect tomato plants. The methodology used is based on the selective amplification of the internal transcribed spacer (ITS) region of Fusarium spp. This assay revealed to be highly specific and sensitive for Fusarium species, targeting only the 29 Fusarium isolates from the 45 tested isolates associated to tomato diseases. Sensitivity was assessed with serial dilutions of Fusarium genomic DNA, with the limit of detection of 3.05 pg. An absolute DNA quantification method was also established, based on the determination of the absolute number of target copies. Finally, the effectiveness of the assay was successfully validated with the detection and quantification of Fusarium spp. in potentially infected tomato plants from an experimental field and in control plants grown under controlled conditions. The established methodology allows a reliable, sensitive, and reproducible estimation of Fusarium accumulation in infected tomato plants, gaining new insights for disease control and providing an additional tool in the screening of resistant plants. Full article
(This article belongs to the Special Issue New Advances in Molecular Diagnostics of Crop Pathogens)
Show Figures

Figure 1

12 pages, 2495 KiB  
Article
Detection of Old and New World Relapsing Fever Borreliae in Ornithodoros Ticks Collected from Warthog Burrows in Zambia
by Yongjin Qiu, Herman M. Chambaro, Kozue Sato, David Squarre, Edgar Simulundu, Masahiro Kajihara, Katendi Changula, Manyando Simbotwe, Hayato Harima, Joseph Ndebe, Ladslav Moonga, Ryo Nakao, Ayato Takada, Bernard Mudenda Hang’ombe, Hirofumi Sawa and Hiroki Kawabata
Microorganisms 2023, 11(1), 200; https://doi.org/10.3390/microorganisms11010200 - 12 Jan 2023
Viewed by 2832
Abstract
Relapsing fever (RF) is an arthropod-borne disease caused by Borrelia spirochete, which is one of the major public health concerns in endemic regions including Africa. However, information on Borrelia spirochetes is limited in Zambia. Here, we investigate the Borrelia spirochetes harbored by Ornithodoros ticks in [...] Read more.
Relapsing fever (RF) is an arthropod-borne disease caused by Borrelia spirochete, which is one of the major public health concerns in endemic regions including Africa. However, information on Borrelia spirochetes is limited in Zambia. Here, we investigate the Borrelia spirochetes harbored by Ornithodoros ticks in Zambian National Parks. We analyzed 182 DNA samples pooled from 886 Ornithodoros ticks. Of these, 43 tested positive, and their sequence revealed that the ticks harbored both Old and New World RF borreliae. This research presents the first evidence of Old-World RF borreliae in Zambia. The New World RF borreliae detected herein differed from the Candidatus Borrelia fainii previously reported in Zambia and were closely related to the pathogenic Borrelia sp. VS4 identified in Tanzania. Additionally, Borrelia theileri was recently reported in Zambia. Hence, at least four different Borrelia species occur in Zambia, and the organisms causing relapsing fever there might be more complex than previously thought. We empirically confirmed that real-time PCR with TaqMan minor groove binder probes accurately and simultaneously detected both Old and New World RF. In this manner, they could facilitate quantitative analyses of both types of RF borreliae. Subsequent investigations should endeavor to isolate the aforementioned Borrelia spp. and perform serosurveys on patients with RF. Full article
(This article belongs to the Special Issue Research on Ticks and Tick-Borne Pathogens)
Show Figures

Figure 1

16 pages, 2811 KiB  
Article
Selective Anti-Leishmanial Strathclyde Minor Groove Binders Using an N-Oxide Tail-Group Modification
by Marina C. Perieteanu, Leah M. C. McGee, Craig D. Shaw, Donna S. MacMillan, Abedawn I. Khalaf, Kirsten Gillingwater, Rebecca Beveridge, Katharine C. Carter, Colin J. Suckling and Fraser J. Scott
Int. J. Mol. Sci. 2022, 23(19), 11912; https://doi.org/10.3390/ijms231911912 - 7 Oct 2022
Cited by 3 | Viewed by 2139
Abstract
The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class [...] Read more.
The neglected tropical disease leishmaniasis, caused by Leishmania spp., is becoming more problematic due to the emergence of drug-resistant strains. Therefore, new drugs to treat leishmaniasis, with novel mechanisms of action, are urgently required. Strathclyde minor groove binders (S-MGBs) are an emerging class of anti-infective agent that have been shown to have potent activity against various bacteria, viruses, fungi and parasites. Herein, it is shown that S-MGBs have potent activity against L. donovani, and that an N-oxide derivation of the tertiary amine tail of typical S-MGBs leads to selective anti-leishmanial activity. Additionally, using S-MGB-219, the N-oxide derivation is shown to retain strong binding to DNA as a 2:1 dimer. These findings support the further study of anti-leishmanial S-MGBs as novel therapeutics. Full article
Show Figures

Figure 1

27 pages, 12403 KiB  
Article
Synthesis and Evaluation of Novel DNA Minor Groove Binders as Antiamoebic Agents
by Hasan Y. Alniss, Naveed A. Khan, Anania Boghossian, Noor Akbar, Hadeel M. Al-Jubeh, Yousef A. Msallam, Balsam Q. Saeed and Ruqaiyyah Siddiqui
Antibiotics 2022, 11(7), 935; https://doi.org/10.3390/antibiotics11070935 - 13 Jul 2022
Cited by 9 | Viewed by 2751
Abstract
The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders [...] Read more.
The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders (MGBs) were synthesized and tested for their antiamoebic activity via amoebicidal, encystation, excystation, and cytopathogenicity assays. It was found that the compounds MGB3, MGB6, MGB22, MGB24, and MGB16 significantly reduce amoeba viability to 76.20%, 59.45%, 66.5%, 39.32%, and 43.21%, respectively, in amoebicidal assays. Moreover, the compounds MGB6, MGB20, MGB22, MGB28, MGB30, MGB32, and MGB16 significantly inhibit Acanthamoeba cysts, leading to the development of only 46.3%, 39%, 30.3%, 29.6%, 27.8%, 41.5%, and 45.6% cysts. Additionally, the compounds MGB3, MGB4, MGB6, MGB22, MGB24, MGB28, MGB32, and MGB16 significantly reduce the re-emergence of cysts to trophozoites, with viable trophozoites being only 64.3%, 47.3%, 41.4%, 52.9%, 55.4%, 40.6%, 62.1%, and 51.7%. Moreover, the compounds MGB3, MGB4, and MGB6 exhibited the greatest reduction in amoeba-mediated host-cell death, with cell death reduced to 41.5%, 49.4%, and 49.5%. With the following determined, future in vivo studies can be carried out to understand the effect of the compounds on animal models such as mice. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

20 pages, 7327 KiB  
Article
Preliminary in Silico Studies of the Interactions of Certain Genotoxic Azo Dyes with Different Double-Stranded DNA Conformations
by Erman Salih İstifli
Colorants 2022, 1(2), 236-255; https://doi.org/10.3390/colorants1020015 - 14 Jun 2022
Cited by 3 | Viewed by 2603
Abstract
Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose genotoxic risks due to their chemical structures; however, the molecular details of the undesirable effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational [...] Read more.
Organic azo dyes, which are widely used in industrial, health and cosmetic fields, pose genotoxic risks due to their chemical structures; however, the molecular details of the undesirable effects of these dyes on DNA have been poorly or insufficiently clarified. In this computational molecular docking study, the DNA binding modes and binding affinities of 14 azo dyes, previously determined to show DNA clastogenicity, were characterized using 2 different double-stranded DNA (dsDNA) conformations (an intact dsDNA and dsDNA with an intercalation gap). In this study, it was determined that 10 out of the 14 genotoxic azo dyes were strong dsDNA minor groove binders, while the remaining ones formed tight binding complexes with dsDNA through intercalation or threading intercalation modes. The azo, nitro, hydroxyl, ammonium, sulfonate, naphthalene, methoxyphenyl, bromine, nitrophenyl, imidazole, amino-phenylethanol and chloro-nitrophenyl groups were found to play primary role in the most favorable binding conformations of these dyes on dsDNA with an affinity ranging from −6.35 kcal/mol to −9.42 kcal/mol. It was determined that dsDNA sequences containing GT dinucleotides are frequently preferred in binding by these dyes, and that rings and polar groups are important features for tight binding with dsDNA. It was concluded that these dyes may be banned, or non-genotoxic congeners should be manufactured with appropriate molecular optimization for the genetic health of the human population and for future generations. Full article
(This article belongs to the Special Issue Colorants: Ancient and Modern)
Show Figures

Figure 1

21 pages, 7690 KiB  
Article
Thermodynamic Factors That Drive Sequence-Specific DNA Binding of Designed, Synthetic Minor Groove Binding Agents
by Ananya Paul, Abdelbasset A. Farahat, David W. Boykin and W. David Wilson
Life 2022, 12(5), 681; https://doi.org/10.3390/life12050681 - 4 May 2022
Cited by 6 | Viewed by 2542
Abstract
Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed [...] Read more.
Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed understanding of the binding thermodynamics of pyridine-based sequence-specific minor groove binders that have different terminal cationic groups. We apply biosensor-surface plasmon resonance and ITC methods to extend the understanding of minor groove binders in two directions: (i) by using designed, heterocyclic dicationic minor groove binders that can incorporate a G•C base pair (bp), with flanking AT base pairs, into their DNA recognition site, and bind to DNA sequences specifically; and (ii) by using a range of flanking AT sequences to better define molecular recognition of the minor groove. A G•C bp in the DNA recognition site causes a generally more negative binding enthalpy than with most previously used pure AT binding sites. The binding is enthalpy-driven at 25 °C and above. The flanking AT sequences also have a large effect on the binding energetics with the -AAAGTTT- site having the strongest affinity. As a result of these studies, we now have a much better understanding of the effects of the DNA sequence and compound structure on the molecular recognition and thermodynamics of minor groove complexes. Full article
Show Figures

Figure 1

14 pages, 6196 KiB  
Article
Stabilization of G-Quadruplex-Duplex Hybrid Structures Induced by Minor Groove-Binding Drugs
by Lily Scott and Tigran V. Chalikian
Life 2022, 12(4), 597; https://doi.org/10.3390/life12040597 - 18 Apr 2022
Cited by 6 | Viewed by 2767
Abstract
Once it had been realized that G-quadruplexes exist in the cell and are involved in regulation of genomic processes, the quest for ligands recognizing these noncanonical structures was underway. Many organic compounds that tightly associate with G-quadruplexes have been identified. However, the specificity [...] Read more.
Once it had been realized that G-quadruplexes exist in the cell and are involved in regulation of genomic processes, the quest for ligands recognizing these noncanonical structures was underway. Many organic compounds that tightly associate with G-quadruplexes have been identified. However, the specificity of G-quadruplex-binding ligands towards individual structures remains problematic, as the common recognition element of these ligands is the G-tetrad. In this paper, we focus on G-quadruplex-duplex hybrids (QDH) containing a hairpin duplex incorporated as a stem-loop into the G-quadruplex core. The presence of a stem-loop renders QDH amenable to sequence-specific recognition by duplex-binding drugs. Should the thermodynamic crosstalk between the stem-loop and the tetraplex core be sufficiently strong, the drug binding to the loop would lead to the stabilization of the entire structure. We studied the stabilizing influence of the minor groove-binders netropsin and Hoechst 33258 on a family of QDH structures, as well as a G-quadruplex and a hairpin modeling the G-quadruplex core and the stem-loop of the QDH’s. We found that the binding of either drug results in an enhancement of the thermal stability of all DNA structures, as expressed by increases in the melting temperature, TM. Analysis of the hierarchical order of increases in TM revealed that the drug-induced stabilization arises from drug binding to the G-quadruplex domain of a QDH and the stem-loop, if the latter contains an all-AT binding site. This result attests to the thermodynamic crosstalk between the stem-loop and the tetraplex core of a QDH. Given the existing library of minor groove-binding drugs recognizing mixed A·T and G·C DNA sequences, our results point to an untapped avenue for sequence-specific recognition of QDH structures in vitro and, possibly, in vivo; thereby, opening the way for selective stabilization of four-stranded DNA structures at predetermined genomic loci, with implications for the control of genomic events. Full article
Show Figures

Figure 1

11 pages, 2811 KiB  
Article
Copper bis-Dipyridoquinoxaline Is a Potent DNA Intercalator that Induces Superoxide-Mediated Cleavage via the Minor Groove
by Zara Molphy, Vickie McKee and Andrew Kellett
Molecules 2019, 24(23), 4301; https://doi.org/10.3390/molecules24234301 - 26 Nov 2019
Cited by 6 | Viewed by 5221
Abstract
Herein, we report the synthesis, characterisation, X-ray crystallography, and oxidative DNA binding interactions of the copper artificial metallo-nuclease [Cu(DPQ)2(NO3)](NO3), where DPQ = dipyrido[3,2-f:2′,3′-h]quinoxaline. The cation [Cu(DPQ)2]2+ (Cu-DPQ), is a high-affinity [...] Read more.
Herein, we report the synthesis, characterisation, X-ray crystallography, and oxidative DNA binding interactions of the copper artificial metallo-nuclease [Cu(DPQ)2(NO3)](NO3), where DPQ = dipyrido[3,2-f:2′,3′-h]quinoxaline. The cation [Cu(DPQ)2]2+ (Cu-DPQ), is a high-affinity binder of duplex DNA and presents an intercalative profile in topoisomerase unwinding and viscosity experiments. Artificial metallo-nuclease activity occurs in the absence of exogenous reductant but is greatly enhanced by the presence of the reductant Na-L-ascorbate. Mechanistically, oxidative DNA damage occurs in the minor groove, is mediated aerobically by the Cu(I) complex and is dependent on both superoxide and hydroxyl radical generation. To corroborate cleavage at the minor groove, DNA oxidation of a cytosine–guanine (5′-CCGG-3′)-rich oligomer was examined in tandem with a 5-methylcytosine (5′-C5mCGG-3′) derivative where 5mC served to sterically block the major groove and direct damage to the minor groove. Overall, both the DNA binding affinity and cleavage mechanism of Cu-DPQ depart from Sigman’s reagent [Cu(1,10-phenanthroline)2]2+; however, both complexes are potent oxidants of the minor groove. Full article
(This article belongs to the Special Issue Biomimetic Radical Chemistry and Applications)
Show Figures

Figure 1

11 pages, 1862 KiB  
Article
Sustained Release of Minor-Groove-Binding Antibiotic Netropsin from Calcium-Coated Groove-Rich DNA Particles
by Hyunsu Jeon, Hyangsu Nam and Jong Bum Lee
Pharmaceutics 2019, 11(8), 387; https://doi.org/10.3390/pharmaceutics11080387 - 2 Aug 2019
Cited by 13 | Viewed by 4101
Abstract
Control of the release properties of drugs has been considered a key factor in the development of drug delivery systems (DDSs). However, drug delivery has limitations including cytotoxicity, low loading efficiency, and burst release. To overcome these challenges, nano or micro-particles have been [...] Read more.
Control of the release properties of drugs has been considered a key factor in the development of drug delivery systems (DDSs). However, drug delivery has limitations including cytotoxicity, low loading efficiency, and burst release. To overcome these challenges, nano or micro-particles have been suggested as carrier systems to deliver chemical drugs. Herein, nano-sized DNA particles (DNAp) were manufactured to deliver netropsin, which is known to bind to DNA minor grooves. The rationally designed particles with exposed rich minor grooves were prepared by DNAp synthesis via rolling circle amplification (RCA). DNAp could load large quantities of netropsin in its minor grooves. An analytical method was also developed for the quantification of netropsin binding to DNAp by UV–visible spectrometry. Moreover, controlled release of netropsin was achieved by forming a layer of Ca2+ on the DNAp (CaDNAp). As a proof of concept, the sustained release of netropsin by CaDNAp highlights the potential of the DNAp-based delivery approach. Full article
(This article belongs to the Special Issue Bioinspired Design in Drug Delivery)
Show Figures

Graphical abstract

13 pages, 2032 KiB  
Article
Anti-Proliferative and Anti-Migration Activity of Arene–Ruthenium(II) Complexes with Azole Therapeutic Agents
by Legna Colina-Vegas, Katia M. Oliveira, Beatriz N. Cunha, Marcia Regina Cominetti, Maribel Navarro and Alzir Azevedo Batista
Inorganics 2018, 6(4), 132; https://doi.org/10.3390/inorganics6040132 - 11 Dec 2018
Cited by 23 | Viewed by 4042
Abstract
The efficacy of organoruthenium complexes containing ergosterol biosynthesis inhibitors (CTZ: clotrimazole, KTZ: ketoconazole and FCZ: fluconazole) against tumor cells, and their interaction with important macro-biomolecules such as human serum albumin and DNA have been investigated here. Our experimental results indicated that these ruthenium(II) [...] Read more.
The efficacy of organoruthenium complexes containing ergosterol biosynthesis inhibitors (CTZ: clotrimazole, KTZ: ketoconazole and FCZ: fluconazole) against tumor cells, and their interaction with important macro-biomolecules such as human serum albumin and DNA have been investigated here. Our experimental results indicated that these ruthenium(II) complexes present spontaneous electrostatic interactions with albumin, and act as minor groove binders with the DNA. The ability of these Ru(II)–azole complexes to inhibit the proliferation of selected human tumor and non-tumor cell lines was determined by MTT assay. Complexes [RuCl(CTZ)(η6-p-cymene)(PPh3)]PF6 (3) and [RuCl(KTZ)(η6-p-cymene)(PPh3)]PF6 (4) were shown to be between 3- and 40-fold more cytotoxic than the free ligands and the positive control cisplatin. Complex 3 was selected to continue studies on the triple negative breast tumor cell line MDA-MB-231, inducing morphological changes, loss of adhesion, inhibition of colony formation, and migration through Boyden chambers, cell cycle arrest in the sub-G1 phase, and a mechanism of cell death by apoptosis. All these interesting results show the potential of this class of organometallic Ru(II) complexes as an antiproliferative agent. Full article
Show Figures

Graphical abstract

15 pages, 1408 KiB  
Article
Application of Fluorescence Lifetime Imaging Microscopy of DNA Binding Dyes to Assess Radiation-Induced Chromatin Compaction Changes
by Elham Abdollahi, Gisela Taucher-Scholz and Burkhard Jakob
Int. J. Mol. Sci. 2018, 19(8), 2399; https://doi.org/10.3390/ijms19082399 - 14 Aug 2018
Cited by 16 | Viewed by 6992
Abstract
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions—but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for [...] Read more.
In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions—but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction. Full article
(This article belongs to the Special Issue Advances and Challenges in Biomolecular Radiation Research)
Show Figures

Figure 1

15 pages, 10134 KiB  
Article
Accurate Estimation of the Standard Binding Free Energy of Netropsin with DNA
by Hong Zhang, Hugo Gattuso, Elise Dumont, Wensheng Cai, Antonio Monari, Christophe Chipot and François Dehez
Molecules 2018, 23(2), 228; https://doi.org/10.3390/molecules23020228 - 25 Jan 2018
Cited by 39 | Viewed by 6733
Abstract
DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.), which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate [...] Read more.
DNA is the target of chemical compounds (drugs, pollutants, photosensitizers, etc.), which bind through non-covalent interactions. Depending on their structure and their chemical properties, DNA binders can associate to the minor or to the major groove of double-stranded DNA. They can also intercalate between two adjacent base pairs, or even replace one or two base pairs within the DNA double helix. The subsequent biological effects are strongly dependent on the architecture of the binding motif. Discriminating between the different binding patterns is of paramount importance to predict and rationalize the effect of a given compound on DNA. The structural characterization of DNA complexes remains, however, cumbersome at the experimental level. In this contribution, we employed all-atom molecular dynamics simulations to determine the standard binding free energy of DNA with netropsin, a well-characterized antiviral and antimicrobial drug, which associates to the minor groove of double-stranded DNA. To overcome the sampling limitations of classical molecular dynamics simulations, which cannot capture the large change in configurational entropy that accompanies binding, we resort to a series of potentials of mean force calculations involving a set of geometrical restraints acting on collective variables. Full article
(This article belongs to the Special Issue Frontiers in Computational Chemistry for Drug Discovery)
Show Figures

Graphical abstract

Back to TopTop