Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Diptera-borne diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5713 KB  
Article
Diversity and Seasonal Abundance of Culicoides (Diptera: Ceratopogonidae) in Tengchong County of Yunnan, China
by Yi-Nan Wang, Ying-Liang Duan, Zhan-Hong Li, Jia-Ming Deng, Xing-Nan Sun, Xue-Ying Shen, An-Xi Yang and Shi-Long Li
Insects 2025, 16(8), 780; https://doi.org/10.3390/insects16080780 - 30 Jul 2025
Viewed by 324
Abstract
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. [...] Read more.
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. To estimate the risk of Culicoides-borne viral diseases such as bluetongue (BT) and epizootic hemorrhagic disease (EHD) in this area, an investigation of the diversity and abundance of Culicoides in Tengchong between May 2024 and April 2025 was performed. As a result, 70 collections totaling approximately 93,000 Culicoides were carried out at five farms (cattle + Asian buffaloes, goats, and sheep, respectively). Nineteen species were identified, and eight potential cryptic species were found. A total of 13 cox1 sequences and 4 28S sequences for 13 specimens were generated. The most dominant species were Obsoletus (44.1%), C. homotomus (23.3%), and C. arakawae (12.9%) at the bovine farm; C. tainanus (68.0%), C. orientalis (12.6%), and C. newsteadi (Asia) (6.3%) at the goat farm; and C. tainanus (73.6%), C. fenggangensis (7.3%), and C. sp. nr palpifer (6.3%) at the sheep farm. In this investigation, C. tainanus, Obsoletus, and C. orientalis were the most dominant potential BTV vectors, and the period between July and October may be the main period for epidemics of Culicoides-borne viruses in Tengchong. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 1910 KB  
Article
Targeting the Risk of Diptera-Borne Zoonoses by a Sentinel Equestrian Centers Program
by Cristiana Cazapal-Monteiro, David Boso, Inês Abreu, Mercedes Camiña, Jaime Sanchís, Adolfo Paz-Silva, Luis Cardoso, Rita Sánchez-Andrade, María Sol Arias and José Ángel Hernández
Pathogens 2025, 14(7), 661; https://doi.org/10.3390/pathogens14070661 - 4 Jul 2025
Viewed by 369
Abstract
Diptera-borne diseases pose a major threat to global health, and their distribution is constantly changing due to climate change, globalization, and environmental changes. To improve the knowledge of dipteran species and their distribution in equine facilities, CDC-UV and oviposition traps were placed, and [...] Read more.
Diptera-borne diseases pose a major threat to global health, and their distribution is constantly changing due to climate change, globalization, and environmental changes. To improve the knowledge of dipteran species and their distribution in equine facilities, CDC-UV and oviposition traps were placed, and the dipping technique was performed in 16 equestrian centers of Northwest (NW) Spain (Galicia and Castilla y León Autonomous Communities) between July and November 2023. A questionnaire was distributed among the horse owners to obtain additional information. Four genera of culicids, Culex (51.8%), Culiseta (38.6%), Anopheles (8.4%), and Aedes/Ochlerotatus (1.2%) were identified in the equestrian centers. Culex pipiens s.l. was the most prevalent and well-distributed species (93.8% of the centers), whereas Anopheles maculipennis s.l. and An. claviger/petragnani, the anopheline species, were the most frequent (37.5% and 31.2%, respectively). The Culiseta genus was found in approximately 81.2% of the equine facilities. All genera were collected at medium and high altitudes and in Csb (warm-summer Mediterranean climate) areas. Equestrian centers from NW Spain albeit a variety of culicids with high vectorial capacity, together with an ideal environment for their breeding, the presence of vectors and hosts (humans and animals). This potential problem for global health enhances the need for entomological surveillance. Full article
(This article belongs to the Special Issue Pets, Wildlife and Parasites—2nd Edition)
Show Figures

Figure 1

20 pages, 3501 KB  
Article
Climate Change: A Major Factor in the Spread of Aedes aegypti (Diptera: Culicidae) and Its Associated Dengue Virus
by Shahid Majeed, Waseem Akram, Muhammad Sufyan, Asim Abbasi, Sidra Riaz, Shahla Faisal, Muhammad Binyameen, Muhammad I. Bashir, Shahzad Hassan, Saba Zafar, Oksana Kucher, Elena A. Piven and Olga D. Kucher
Insects 2025, 16(5), 513; https://doi.org/10.3390/insects16050513 - 11 May 2025
Cited by 1 | Viewed by 1891
Abstract
Climate change is thought to be responsible for the spread of various vector-borne diseases. The current study was conducted to evaluate the impact of different temperature and relative humidity regimes on the developmental stages of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). [...] Read more.
Climate change is thought to be responsible for the spread of various vector-borne diseases. The current study was conducted to evaluate the impact of different temperature and relative humidity regimes on the developmental stages of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). The study also evaluated the impact of larval density on the survival of Ae. aegypti. In addition, the association between vector larval abundance, dengue incidence, and climatic factors were elucidated during 2016–2019 in three populated districts of Punjab, Pakistan, i.e., Lahore, Rawalpindi, and Multan. The results of the study revealed that at 10 °C and 35 °C, egg hatching and adult emergence were significantly reduced, regardless of the relative humidity. In contrast, at 20 °C and 30 °C, the rates of egg and adult survival increased with higher relative humidity. In addition, a density-dependent response was observed regarding larval survival of Ae. aegypti. Moreover, larval incidence was positively correlated with the number of dengue patients, Tmax, RH, and precipitation at Lahore (0.55, 0.23, 0.29, and 0.13), Rawalpindi (0.90, 0.30, 0.21, and 0.14), and Multan (0.05, 0.27, and 0.13) respectively, except in Multan, where a negative correlation (−0.09) with precipitation was observed. The inflow of patients had a positive correlation with the occurrence of a larval population, relative humidity, and precipitation at Lahore, Rawalpindi, and Multan districts, with the scale values of 0.55, 0.25, and 0.16; 0.90, 0.22, and 0.03; and 0.05, 0.06, and 0.03, respectively. In addition, a forecast model, ARIMA, predicted that there was a higher rate of larval occurrence in Rawalpindi, followed by Lahore. This study concluded that the role of precipitation > 200 mm prior to a 1–2-month lag, a 20–30 °C temperature range, and an RH exceeding 60% lead to the occurrence of larvae and dengue case spikes. This study will help to reinforce dengue surveillance and control strategies in Pakistan and to establish early management strategies based on changing climatic factors. Full article
(This article belongs to the Special Issue Insect Dynamics: Modeling in Insect Pest Management)
Show Figures

Figure 1

16 pages, 9107 KB  
Article
Future Climate Predicts Range Shifts and Increased Global Habitat Suitability for 29 Aedes Mosquito Species
by Xueyou Zhang, Hongyan Mei, Peixiao Nie, Xiaokang Hu and Jianmeng Feng
Insects 2025, 16(5), 476; https://doi.org/10.3390/insects16050476 - 30 Apr 2025
Cited by 1 | Viewed by 1474
Abstract
Aedes mosquitoes (Diptera, Culicidae) are the major vectors for many mosquito-borne diseases. Here, we retrieved 878,954 global occurrences of 29 Aedes mosquito species and 30 candidate predictors at a global scale. We created a unified frame and built 29 multi-algorithm species distribution models [...] Read more.
Aedes mosquitoes (Diptera, Culicidae) are the major vectors for many mosquito-borne diseases. Here, we retrieved 878,954 global occurrences of 29 Aedes mosquito species and 30 candidate predictors at a global scale. We created a unified frame and built 29 multi-algorithm species distribution models to project the ranges and overlapped them to examine the range-overlap hotspots under future scenarios. We detected expanded ranges in most Aedes mosquito species, and a substantial increase in the index of habitat suitability overlap was detected in more than 70% of the global terrestrial area, particularly in Europe, North America, and Africa. We also identified extensive range overlap, which increased in future scenarios. Climatic factors had a more significant influence on range dynamics than other variables. The expanded ranges of most Aedes mosquito species and the substantial increase in the overlap index of habitat suitability in most regions suggest globally increasing threats of Aedes-borne epidemic transmission. Thus, much stricter strategies must be implemented, particularly in Europe, North America, and Africa. As climate change increases habitat suitability and expands ranges in most Aedes mosquito species, mitigating future climate change will be a key approach to combatting their impacts. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

17 pages, 1943 KB  
Article
DNA Metabarcoding Unveils Habitat-Linked Dietary Variation in Aerial Insectivorous Birds
by Fatihah Najihah Arazmi, Nor Adibah Ismail, Ummi Nur Syafiqah Daud and Mohammad Saiful Mansor
Animals 2025, 15(7), 974; https://doi.org/10.3390/ani15070974 - 27 Mar 2025
Cited by 2 | Viewed by 911 | Correction
Abstract
The conversion of tropical forests into urban and agriculture landscapes may alter insect populations through habitat disturbance and impact the diets of aerial insectivores. Most dietary studies on aerial insectivores have limitation on identifying prey at higher taxonomic levels in broad landscapes, restricting [...] Read more.
The conversion of tropical forests into urban and agriculture landscapes may alter insect populations through habitat disturbance and impact the diets of aerial insectivores. Most dietary studies on aerial insectivores have limitation on identifying prey at higher taxonomic levels in broad landscapes, restricting species-level identification and thus making a detailed dietary comparison impossible. This study examines the dietary changes through adaptation of house-farm swiftlets (Aerodramus sp.) and Pacific swallows (Hirundo tahitica) across three distinct habitats in Peninsular Malaysia: mixed-use landscapes, oil palm plantations, and paddy fields. High-throughput DNA metabarcoding with ANML primers targeting mitochondrial CO1 gene, identified 245 arthropod prey species, with six dominant orders: Coleoptera, Diptera, Blattodea, Hemiptera, Hymenoptera, and Lepidoptera. Mixed-use landscapes supported the highest dietary diversity and niche breadth, reflecting their ecological complexity. Paddy fields exhibited moderate diversity, while oil palm plantations demonstrated the lowest diversity, influenced by simplified vegetation structures and limited prey availability. The consumption of agricultural pests and vector species highlights the critical ecological role of aerial insectivorous birds in natural pest management and mitigating vector-borne disease risks. This research emphasizes the importance of conserving habitat heterogeneity to sustain the ecological services provided by these birds, benefiting both agricultural productivity and public health. Full article
(This article belongs to the Section Birds)
Show Figures

Figure 1

9 pages, 275 KB  
Article
Xenorhabdus and Photorhabdus Bacteria as Potential Candidates for the Control of Culex pipiens L. (Diptera: Culicidae), the Principal Vector of West Nile Virus and Lymphatic Filariasis
by Ebubekir Yüksel, Alparslan Yıldırım, Mustafa İmren, Ramazan Canhilal and Abdelfattah A. Dababat
Pathogens 2023, 12(9), 1095; https://doi.org/10.3390/pathogens12091095 - 28 Aug 2023
Cited by 12 | Viewed by 2157
Abstract
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have [...] Read more.
Vector-borne diseases pose a severe threat to human and animal health. Culex pipiens L. (Diptera: Culicidae) is a widespread mosquito species and serves as a vector for the transmission of infectious diseases such as West Nile disease and Lymphatic Filariasis. Synthetic insecticides have been the prime control method for many years to suppress Cx. pipiens populations. However, recently, the use of insecticides has begun to be questioned due to the detrimental impact on human health and the natural environment. Therefore, many authorities urge the development of eco-friendly control methods that are nontoxic to humans. The bacterial associates [Xenorhabdus and Photorhabdus spp. (Enterobacterales: Morganellaceae)] of entomopathogenic nematodes (EPNs) (Sterinernema spp. and Heterorhabditis spp.) (Rhabditida: Heterorhabditidae and Steinernematidae) are one of the green approaches to combat a variety of insect pests. In the present study, the mosquitocidal activity of the cell-free supernatants and cell suspension (4 × 107 cells mL−1) of four different symbiotic bacteria (Xenorhabdus nematophila, X. bovienii, X. budapestensis, and P. luminescens subsp. kayaii) was assessed against different development stages of Cx. pipiens (The 1st/2nd and 3rd/4th instar larvae and pupa) under laboratory conditions. The bacterial symbionts were able to kill all the development stages with varying levels of mortality. The 1st/2nd instar larvae exhibited the highest susceptibility to the cell-free supernatants and cell suspensions of symbiotic bacteria and the efficacy of the cell-free supernatants and cell suspensions gradually declined with increasing phases of growth. The highest effectiveness was achieved by the X. bovienii KCS-4S strain inducing 95% mortality to the 1st/2nd instar larvae. The results indicate that tested bacterial symbionts have great potential as an eco-friendly alternative to insecticides. Full article
(This article belongs to the Special Issue Soil Borne Pathogens)
12 pages, 1153 KB  
Article
Spent Coffee Grounds and Novaluron Are Toxic to Aedes aegypti (Diptera: Culicidae) Larvae
by Waralee Thanasoponkul, Tanasak Changbunjong, Rattanavadee Sukkurd and Tawee Saiwichai
Insects 2023, 14(6), 564; https://doi.org/10.3390/insects14060564 - 16 Jun 2023
Cited by 4 | Viewed by 5815
Abstract
Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, [...] Read more.
Aedes aegypti (Diptera: Culicidae) is a vector for mosquito-borne diseases worldwide. Insecticide resistance is a major concern in controlling this mosquito. We investigated the chemical compounds in wet and dry spent coffee grounds (wSCGs and dSCGs) and evaluated the efficacy of dSCGs, wSCGs, and novaluron on the mortality and adult emergence inhibition of Ae. aegypti. We found higher concentrations of chemical compounds in wSCGs than in dSCGs. The wSCGs and dSCGs both contained total phenolic compounds, total flavonoid compounds, caffeic acid, coumaric acid, protocatechuic acid, and vanillic acid. Complete mortality was observed after 48 h of exposure to 50 g/L wSCGs, while similar mortality was found after 120 h of exposure to 10 µg/L of novaluron. The sublethal dose was a concentration of wSCGs (5 g/L) and novaluron (0.01, 0.1, and 1 µg/L) combined that resulted in a larval mortality lower than twenty percent (at 72 h) to determine their synergistic effects. The death rate of larvae exposed in sublethal combination of wSCGs and novaluron was significantly higher than that of its stand-alone. The findings indicate that the combination of wSCGs and novaluron at sublethal concentrations had synergistic effects on the mortality of Ae. aegypti larvae and could be applied as an alternative control measure. Full article
(This article belongs to the Special Issue The Efficacy of Insecticides and Botanicals against Pests)
Show Figures

Figure 1

12 pages, 902 KB  
Review
Compounds Inhibiting Noppera-bo, a Glutathione S-transferase Involved in Insect Ecdysteroid Biosynthesis: Novel Insect Growth Regulators
by Kana Ebihara and Ryusuke Niwa
Biomolecules 2023, 13(3), 461; https://doi.org/10.3390/biom13030461 - 2 Mar 2023
Cited by 9 | Viewed by 4689
Abstract
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster [...] Read more.
Glutathione S-transferases (GSTs) are conserved in a wide range of organisms, including insects. In 2014, an epsilon GST, known as Noppera-bo (Nobo), was shown to regulate the biosynthesis of ecdysteroid, the principal steroid hormone in insects. Studies on fruit flies, Drosophila melanogaster, and silkworms, Bombyx mori, demonstrated that loss-of-function mutants of nobo fail to synthesize ecdysteroid and die during development, consistent with the essential function of ecdysteroids in insect molting and metamorphosis. This genetic evidence suggests that chemical compounds that inhibit activity of Nobo could be insect growth regulators (IGRs) that kill insects by disrupting their molting and metamorphosis. In addition, because nobo is conserved only in Diptera and Lepidoptera, a Nobo inhibitor could be used to target IGRs in a narrow spectrum of insect taxa. Dipterans include mosquitoes, some of which are vectors of diseases such as malaria and dengue fever. Given that mosquito control is essential to reduce mosquito-borne diseases, new IGRs that specifically kill mosquito vectors are always in demand. We have addressed this issue by identifying and characterizing several chemical compounds that inhibit Nobo protein in both D. melanogaster and the yellow fever mosquito, Aedes aegypti. In this review, we summarize our findings from the search for Nobo inhibitors. Full article
(This article belongs to the Special Issue Versatility of Glutathione Transferase Proteins)
Show Figures

Figure 1

24 pages, 477 KB  
Review
Mosquito Vectors (Diptera: Culicidae) and Mosquito-Borne Diseases in North Africa
by Amira Nebbak, Lionel Almeras, Philippe Parola and Idir Bitam
Insects 2022, 13(10), 962; https://doi.org/10.3390/insects13100962 - 20 Oct 2022
Cited by 32 | Viewed by 12505
Abstract
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world’s most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases’ (MBDs) [...] Read more.
Mosquitoes (Diptera: Culicidae) are of significant public health importance because of their ability to transmit major diseases to humans and animals, and are considered as the world’s most deadly arthropods. In recent decades, climate change and globalization have promoted mosquito-borne diseases’ (MBDs) geographic expansion to new areas, such as North African countries, where some of these MBDs were unusual or even unknown. In this review, we summarize the latest data on mosquito vector species distribution and MBDs affecting both human and animals in North Africa, in order to better understand the risks associated with the introduction of new invasive mosquito species such as Aedes albopictus. Currently, 26 mosquito species confirmed as pathogen vectors occur in North Africa, including Aedes (five species), Culex (eight species), Culiseta (one species) and Anopheles (12 species). These 26 species are involved in the circulation of seven MBDs in North Africa, including two parasitic infections (malaria and filariasis) and five viral infections (WNV, RVF, DENV, SINV and USUV). No bacterial diseases have been reported so far in this area. This review may guide research studies to fill the data gaps, as well as helping with developing effective vector surveillance and controlling strategies by concerned institutions in different involved countries, leading to cooperative and coordinate vector control measures. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Graphical abstract

11 pages, 14632 KB  
Article
Bacterial Symbionts in Ceratitis capitata
by Alessia Cappelli, Dezemona Petrelli, Giuliano Gasperi, Aurelio Giuseppe Maria Serrao, Irene Ricci, Claudia Damiani and Guido Favia
Insects 2022, 13(5), 474; https://doi.org/10.3390/insects13050474 - 19 May 2022
Cited by 15 | Viewed by 3471
Abstract
Ceratitis capitata (Diptera: Tephritidae) is responsible for extensive damage in agriculture with important economic losses. Several strategies have been proposed to control this insect pest including insecticides and the Sterile Insect Technique. Traditional control methods should be implemented by innovative tools, among which [...] Read more.
Ceratitis capitata (Diptera: Tephritidae) is responsible for extensive damage in agriculture with important economic losses. Several strategies have been proposed to control this insect pest including insecticides and the Sterile Insect Technique. Traditional control methods should be implemented by innovative tools, among which those based on insect symbionts seem very promising. Our study aimed to investigate, through the 16S Miseq analysis, the microbial communities associated with selected organs in three different medfly populations to identify possible candidates to develop symbiont-based control approaches. Our results confirm that Klebsiella and Providencia are the dominant bacteria in guts, while a more diversified microbial community has been detected in reproductive organs. Concertedly, we revealed for the first time the presence of Chroococcidiopsis and Propionibacterium as stable components of the medfly’s microbiota. Additionally, in the reproductive organs, we detected Asaia, a bacterium already proposed as a tool in the Symbiotic Control of Vector-Borne Diseases. A strain of Asaia, genetically modified to produce a green fluorescent protein, was used to ascertain the ability of Asaia to colonize specific organs of C. capitata. Our study lays the foundation for the development of control methods for C. capitata based on the use of symbiont bacteria. Full article
Show Figures

Figure 1

13 pages, 1161 KB  
Article
Insights on Transmission, Spread, and Possible Endemization of Selected Arboviruses in Israel—Interim Results from Five-Year Surveillance
by Adi Behar, Orly Friedgut, Ditza Rotenberg, Olga Zalesky, Omer Izhaki, Amit Yulzary, Asael Rot, Ricardo Wolkomirsky, Lior Zamir, Faris Hmd and Jacob Brenner
Vet. Sci. 2022, 9(2), 65; https://doi.org/10.3390/vetsci9020065 - 2 Feb 2022
Cited by 7 | Viewed by 3273
Abstract
Outbreaks of arthropod-borne (arbo) viruses that infect livestock impact the health and welfare of domestic and wild animals are often responsible for significant economic losses in livestock production. Surveillance and early warning systems effectively predict the emergence and re-emergence of arboviral disease. This [...] Read more.
Outbreaks of arthropod-borne (arbo) viruses that infect livestock impact the health and welfare of domestic and wild animals are often responsible for significant economic losses in livestock production. Surveillance and early warning systems effectively predict the emergence and re-emergence of arboviral disease. This paper presents the interim results of five years monitoring the exposure of sentinel naïve heifers and Culicoides biting midges (Diptera; Ceratopogonidae) to bovine ephemeral fever virus (BEFV), Simbu serogroup viruses, bluetongue viruses (BTV), and epizootic hemorrhagic disease viruses (EHDV). The data were collected from 11 dairy farms situated within eight different geographical regions in Israel. The results indicate that cattle in Israel are affected by all four viruses from the early summer onward. The investigated viruses exhibit unique site-specific profiles in both ruminants and vectors. The potential of several vectors to transmit these viruses and lack of cross-protection to re-infection with multiple serotypes (BTV and EHDV) or species (Simbu serogroup viruses) highlights some likely mechanisms that may play a role in these viruses’ maintenance cycle and possible endemization in our region. Full article
Show Figures

Figure 1

19 pages, 2385 KB  
Article
Curcumin Derivatives as Potential Mosquito Larvicidal Agents against Two Mosquito Vectors, Culex pipiens and Aedes albopictus
by Dimitris Matiadis, Panagiota G. V. Liggri, Eftichia Kritsi, Niki Tzioumaki, Panagiotis Zoumpoulakis, Dimitrios P. Papachristos, George Balatsos, Marina Sagnou and Antonios Michaelakis
Int. J. Mol. Sci. 2021, 22(16), 8915; https://doi.org/10.3390/ijms22168915 - 18 Aug 2021
Cited by 18 | Viewed by 3563
Abstract
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) [...] Read more.
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end. Full article
(This article belongs to the Collection Feature Papers in Molecular Pharmacology)
Show Figures

Figure 1

20 pages, 2122 KB  
Article
Mosquitoes Know No Borders: Surveillance of Potential Introduction of Aedes Species in Southern Québec, Canada
by Anne-Marie Lowe, Karl Forest-Bérard, Richard Trudel, Ernest Lo, Philippe Gamache, Matthieu Tandonnet, Serge-Olivier Kotchi, Patrick Leighton, Antonia Dibernardo, Robbin Lindsay and Antoinette Ludwig
Pathogens 2021, 10(8), 998; https://doi.org/10.3390/pathogens10080998 - 7 Aug 2021
Cited by 7 | Viewed by 4713
Abstract
Current climatic conditions limit the distribution of Aedes (Stegomyia) albopictus (Skuse, Diptera: Culicidae) in the north, but predictive climate models suggest this species could establish itself in southern Canada by 2040. A vector of chikungunya, dengue, yellow fever, Zika and West [...] Read more.
Current climatic conditions limit the distribution of Aedes (Stegomyia) albopictus (Skuse, Diptera: Culicidae) in the north, but predictive climate models suggest this species could establish itself in southern Canada by 2040. A vector of chikungunya, dengue, yellow fever, Zika and West Nile viruses, the Ae. Albopictus has been detected in Windsor, Ontario since 2016. Given the potential public health implications, and knowing that Aedes spp. can easily be introduced by ground transportation, this study aimed to determine if specimens could be detected, using an adequate methodology, in southern Québec. Mosquitoes were sampled in 2016 and 2017 along the main roads connecting Canada and the U.S., using Biogent traps (Sentinel-2, Gravide Aedes traps) and ovitraps. Overall, 24 mosquito spp. were captured, excluding Ae. Albopictus, but detecting one Aedes (Stegomyia) aegypti (Skuse) specimen (laid eggs). The most frequent species among captured adults were Ochlerotatus triseriatus, Culex pipiens complex, and Ochlerotatus japonicus (31.0%, 26.0%, and 17.3%, respectively). The present study adds to the increasing number of studies reporting on the range expansions of these mosquito species, and suggests that ongoing monitoring, using multiple capture techniques targeting a wide range of species, may provide useful information to public health with respect to the growing risk of emerging mosquito-borne diseases in southern Canada. Full article
(This article belongs to the Special Issue Emerging Vector-Borne and Zoonotic Diseases)
Show Figures

Figure 1

15 pages, 1974 KB  
Article
Chikungunya Beyond the Tropics: Where and When Do We Expect Disease Transmission in Europe?
by Nils Benjamin Tjaden, Yanchao Cheng, Carl Beierkuhnlein and Stephanie Margarete Thomas
Viruses 2021, 13(6), 1024; https://doi.org/10.3390/v13061024 - 29 May 2021
Cited by 24 | Viewed by 6331
Abstract
Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease reported in at least 50 countries, mostly in the tropics. It has spread around the globe within the last two decades, with local outbreaks in Europe. The vector mosquito Aedes albopictus (Diptera, Culicidae) has [...] Read more.
Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease reported in at least 50 countries, mostly in the tropics. It has spread around the globe within the last two decades, with local outbreaks in Europe. The vector mosquito Aedes albopictus (Diptera, Culicidae) has already widely established itself in southern Europe and is spreading towards central parts of the continent. Public health authorities and policymakers need to be informed about where and when a chikungunya transmission is likely to take place. Here, we adapted a previously published global ecological niche model (ENM) by including only non-tropical chikungunya occurrence records and selecting bioclimatic variables that can reflect the temperate and sub-tropical conditions in Europe with greater accuracy. Additionally, we applied an epidemiological model to capture the temporal outbreak risk of chikungunya in six selected European cities. Overall, the non-tropical ENM captures all the previous outbreaks in Europe, whereas the global ENM had underestimated the risk. Highly suitable areas are more widespread than previously assumed. They are found in coastal areas of the Mediterranean Sea, in the western part of the Iberian Peninsula, and in Atlantic coastal areas of France. Under a worst-case scenario, even large areas of western Germany and the Benelux states are considered potential areas of transmission. For the six selected European cities, June–September (the 22th–38th week) is the most vulnerable time period, with the maximum continuous duration of a possible transmission period lasting up to 93 days (Ravenna, Italy). Full article
(This article belongs to the Special Issue Mosquito-Borne Virus Ecology)
Show Figures

Figure 1

16 pages, 922 KB  
Article
Salvia Spp. Essential Oils against the Arboviruses Vector Aedes albopictus (Diptera: Culicidae): Bioactivity, Composition, and Sensorial Profile—Stage 1
by Basma Najar, Luisa Pistelli, Francesca Venturi, Giuseppe Ferroni, Silvia Giovanelli, Claudio Cervelli, Stefano Bedini and Barbara Conti
Biology 2020, 9(8), 206; https://doi.org/10.3390/biology9080206 - 4 Aug 2020
Cited by 6 | Viewed by 3634
Abstract
Mosquito-borne arboviruses diseases cause a substantial public health burden within their expanding range. To date, their control relies on synthetic insecticides and repellents aimed to control the competent mosquito vectors. However, their use is hampered by their high economic, environmental, and human health [...] Read more.
Mosquito-borne arboviruses diseases cause a substantial public health burden within their expanding range. To date, their control relies on synthetic insecticides and repellents aimed to control the competent mosquito vectors. However, their use is hampered by their high economic, environmental, and human health impacts. Natural products may represent a valid eco-friendly alternative to chemical pesticides to control mosquitoes, and mosquito-borne parasitic diseases. The aim of this work was to combine the chemical and sensorial profiles with the bioactivity data of Salvia spp. essential oils (EOs) to select the most suitable EO to be used as a repellent and insecticide against the invasive mosquito Aedes albopictus (Diptera: Culicidae), vector of pathogens and parasites, and to describe the EOs smell profile. To do this, the EOs of four Salvia species, namely S. dolomitica, S. dorisiana, S. sclarea, and S. somalensis were extracted, chemically analyzed and tested for their bioactivity as larvicides and repellents against Ae. albopictus. Then, the smell profiles of the EOs were described by a panel of assessors. The LC50 of the EOs ranged from 71.08 to 559.77 μL L−1 for S. dorisiana and S. sclarea, respectively. S. sclarea EO showed the highest repellence among the tested EOs against Ae. albopictus females (RD95 = 12.65 nL cm−2), while the most long-lasting, at the dose of 20 nL cm−2, was S. dorisiana (Complete Protection Time = 43.28 ± 3.43 min). S. sclarea EO showed the best smell profile, while S. dolomitica EO the worst one with a high number of off-flavors. Overall, all the EOs, with the exception of the S. dolomitica one, were indicated as suitable for “environmental protection”, while S. dorisiana and S. sclarea were indicated as suitable also for “Body care”. Full article
(This article belongs to the Special Issue Bioactivity of Medicinal Plants and Extracts)
Show Figures

Graphical abstract

Back to TopTop