Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ECO EPDM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2672 KB  
Article
Chemical Stability and Leaching Behavior of ECO EPDM in Acidic Fuel Cell-like Conditions
by Daniel Foltuț, Georgiana-Iulia Șoșoi and Viorel-Aurel Șerban
Materials 2025, 18(14), 3260; https://doi.org/10.3390/ma18143260 - 10 Jul 2025
Viewed by 379
Abstract
This study investigates the chemical stability and leaching behavior of two environmentally sustainable EPDM elastomers filled with circular carbon black (CCB) and recycled carbon black (RCB) when exposed to acidic, fuel cell-like environments. Accelerated aging tests were conducted in sulfuric acid solutions of [...] Read more.
This study investigates the chemical stability and leaching behavior of two environmentally sustainable EPDM elastomers filled with circular carbon black (CCB) and recycled carbon black (RCB) when exposed to acidic, fuel cell-like environments. Accelerated aging tests were conducted in sulfuric acid solutions of varying concentrations (1 M, 0.1 M, and 0.001 M) at 90 °C for 1000 h to simulate long-term degradation in proton exchange membrane fuel cell (PEMFC) sealing applications. Complementary hot water extraction tests (HWET) were performed at 80 °C for up to 168 h to evaluate ionic leaching via conductivity measurements. HPLC-DAD analysis was used to assess organic leachates, while surface changes were examined by SEM and thermal transitions by DSC. Results revealed lower leaching and improved surface preservation in the CCB-filled EPDM, which remained below the critical 5 µS/cm ionic conductivity threshold for longer durations than its RCB counterpart. HPLC results showed filler-dependent trends in organic compound release, with CCB EPDM exhibiting higher leaching only under strong acid exposure. SEM confirmed greater surface damage and porosity in RCB EPDM. Overall, both materials demonstrated adequate chemical resistance, but the CCB formulation exhibited superior long-term stability, supporting its use in sustainable PEMFC sealing applications. Full article
(This article belongs to the Collection Materials and Technologies for Hydrogen and Fuel Cells)
Show Figures

Figure 1

13 pages, 3806 KB  
Article
Mechanical Performance Degradation of ECO EPDM Elastomers in Acidic Fuel Cell Environments
by Daniel Foltuț and Viorel-Aurel Șerban
Materials 2025, 18(9), 2071; https://doi.org/10.3390/ma18092071 - 30 Apr 2025
Cited by 1 | Viewed by 601
Abstract
Sustainable ethylene propylene diene monomer (EPDM) elastomers are gaining traction as eco-friendly sealing materials in fuel cell applications. This study evaluates the mechanical degradation behavior of two ECO EPDM formulations—one reinforced with circular carbon black (CCB EPDM), and the other with recycled carbon [...] Read more.
Sustainable ethylene propylene diene monomer (EPDM) elastomers are gaining traction as eco-friendly sealing materials in fuel cell applications. This study evaluates the mechanical degradation behavior of two ECO EPDM formulations—one reinforced with circular carbon black (CCB EPDM), and the other with recycled carbon black (RCB EPDM)—under conditions representative of acidic fuel cell environments. The samples underwent thermal aging at 90 °C for 1000 h, and were immersed in aqueous H2SO4 solutions of varying concentrations (1 M, 0.1 M, and 0.001 M) for 1000 h at the same temperature. Gravimetric and volumetric swelling measurements revealed that RCB EPDM experienced significantly higher mass and volume uptake, particularly at intermediate acid concentration, indicating greater susceptibility to fluid ingress. Mechanical testing, including measurement of tensile strength, Shore A hardness, and IRHD microhardness, showed that while RCB EPDM exhibited higher initial strength, it degraded more severely under thermal and acidic exposure. SEM-EDS analysis revealed microstructural damage and compositional changes, with RCB EPDM displaying more pronounced oxidation and surface erosion. In contrast, CCB EPDM demonstrated greater retention of mechanical integrity, greater dimensional stability, and lower variability across aging conditions. These findings highlight the advantages of circular carbon black in enhancing the durability of ECO EPDM compounds in acidic and thermally dynamic fuel cell environments. Full article
(This article belongs to the Collection Materials and Technologies for Hydrogen and Fuel Cells)
Show Figures

Figure 1

13 pages, 4713 KB  
Article
Synthesis of a Zinc Hydroxystannate/Sepiolite Hybrid Additive to Avoid Fire Propagation and Reduce Smoke Emission of EPDM Rubber Nanocomposites
by María Luisa Puertas, Teresa Durán, José Florindo Bartolomé and Antonio Esteban-Cubillo
Materials 2022, 15(18), 6297; https://doi.org/10.3390/ma15186297 - 10 Sep 2022
Cited by 6 | Viewed by 1988
Abstract
A zinc hydroxystannate/sepiolite (SEPZHS) hybrid additive was successfully prepared following a facile wet chemical route synthesis where zinc hydroxystannate (ZHS) nanoparticles were grown on the sepiolite’s surface. SEPZHS particles have a fibrillar structure with ZHS nanoparticles homogeneously dispersed and with significantly smaller particle [...] Read more.
A zinc hydroxystannate/sepiolite (SEPZHS) hybrid additive was successfully prepared following a facile wet chemical route synthesis where zinc hydroxystannate (ZHS) nanoparticles were grown on the sepiolite’s surface. SEPZHS particles have a fibrillar structure with ZHS nanoparticles homogeneously dispersed and with significantly smaller particle sizes than the synthesized ZHS nanoparticles alone. Sepiolite and SEPZHS were organically modified and introduced in a basic ethylene propylene diene monomer rubber (EPDM) formulation for cable to evaluate the nanocomposite behavior under direct fire sources. The results confirmed the synergistic effect of the hybrid SEPZHS additive in the formation of a most stable and efficient char barrier, thus improving the flame-retardant behavior of EPDM nanocomposite in terms of heat emission, with reductions of more than 40% in the peak of Heat Release Rate (cone calorimeter test), and smoke suppression, with more than 25% reduction in the Total Smoke Production and Smoke Density parameters (smoke chamber test). Moreover, the addition of sepiolite-based additives increased the mechanical properties (hardness) of the nanocomposites, as a result of the matrix reinforcement. This suggests that the SEPZHS hybrid additive may provide a promising option for a new, cost-effective, eco-friendly, yet efficient flame-retardant solution. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

18 pages, 2861 KB  
Article
A Method to Improve the Characteristics of EPDM Rubber Based Eco-Composites with Electron Beam
by Gabriela Craciun, Elena Manaila, Daniel Ighigeanu and Maria Daniela Stelescu
Polymers 2020, 12(1), 215; https://doi.org/10.3390/polym12010215 - 15 Jan 2020
Cited by 33 | Viewed by 7793
Abstract
A natural fiber reinforced composite, belonging to the class of eco composites, based on ethylene-propylene-terpolymer rubber (EPDM) and wood wastes were obtained by electron beam irradiation at 75, 150, 300, and 600 kGy in atmospheric conditions and at room temperature using a linear [...] Read more.
A natural fiber reinforced composite, belonging to the class of eco composites, based on ethylene-propylene-terpolymer rubber (EPDM) and wood wastes were obtained by electron beam irradiation at 75, 150, 300, and 600 kGy in atmospheric conditions and at room temperature using a linear accelerator of 5.5 MeV. The sawdust (S), in amounts of 5 and 15 phr, respectively, was used to act as a natural filler for the improvement of physical and chemical characteristics. The cross-linking effects were evaluated through sol-gel analysis, mechanical tests, and Fourier Transform Infrared FTIR spectroscopy comparatively with the classic method with dibenzoyl peroxide (P) applied on the same types of samples at high temperature. Gel fraction exhibits values over 98% but, in the case of P cross-linking, is necessary to add more sawdust (15 phr) to obtain the same results as in the case of electron beam (EB) cross-linking (5 phr/300 kGy). Even if the EB cross-linking and sawdust addition have a reinforcement effect on EPDM rubber, the medium irradiation dose of 300 kGy looks to be a limit to which or from which the properties of the composite are improved or deteriorated. The absorption behavior of the eco-composites was studied through water uptake tests. Full article
(This article belongs to the Special Issue Advances in Wood Composites II)
Show Figures

Graphical abstract

Back to TopTop