Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,254)

Search Parameters:
Keywords = ESI-MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1595 KB  
Article
Characterization of Hottentotta judaicus Scorpion Venom: Toxic Effects and Neurobehavioral Modulation in Insect Models
by Rim Wehbe, Aline Karaki, Zeina Dassouki, Mohamad Rima, Adolfo Borges, Rabih Roufayel, Christian Legros, Ziad Fajloun and Zakaria Kambris
Toxins 2025, 17(11), 546; https://doi.org/10.3390/toxins17110546 - 3 Nov 2025
Abstract
Scorpion venom is a rich source of diverse bioactive molecules with medicinal importance. While the venoms of many Buthidae scorpions have been extensively studied for their toxicity and therapeutic potential, Hottentotta judaicus scorpion venom (HjSV) remains poorly explored. In this study, using LC-ESI-MS, [...] Read more.
Scorpion venom is a rich source of diverse bioactive molecules with medicinal importance. While the venoms of many Buthidae scorpions have been extensively studied for their toxicity and therapeutic potential, Hottentotta judaicus scorpion venom (HjSV) remains poorly explored. In this study, using LC-ESI-MS, we show that HjSV has a complex composition. We find that HjSV has no significant cytotoxic effects on three human cancer cell lines, even at concentrations of up to 1000 µg/mL. However, it exerts a dose-dependent insecticidal effect against Drosophila melanogaster, a well-established genetic model organism, and two medically relevant mosquito species, Aedes albopictus and Culex pipiens. These findings highlight the venom’s selective activity and reveal a species-dependent susceptibility in insects, with mosquitoes being more sensitive than Drosophila. Furthermore, we show that at sub-lethal doses, HjSV alters D. melanogaster behavioral patterns, significantly reducing locomotor activity and increasing sleep duration. Altogether, our results provide new insights into the dual role of HjSV as both an insecticidal agent and behavioral modulator, shedding light on its ecological function in prey subduing and its potential application in pest control strategies. Full article
(This article belongs to the Special Issue Animals Venom in Drug Discovery: A Valuable Therapeutic Tool)
Show Figures

Graphical abstract

15 pages, 933 KB  
Article
Biological Activities and Phenolic Profile of Bursera microphylla A. Gray: Study of the Magdalena Ecotype
by Heriberto Torres-Moreno, Julio César López-Romero, Max Vidal-Gutiérrez, Karen Lillian Rodríguez-Martínez, Ramón E. Robles Zepeda, Wagner Vilegas and Ailyn Oros-Morales
Plants 2025, 14(21), 3357; https://doi.org/10.3390/plants14213357 - 2 Nov 2025
Abstract
Bursera microphylla A. Gray (Burseraceae) is a medicinal plant native to Sonora, Mexico, with antioxidant, anti-inflammatory, and antiproliferative properties. However, the pharmacological potential of its ecotypes remains underexplored. This study evaluated the biological activity and chemical composition of ethanolic extracts from the fruit [...] Read more.
Bursera microphylla A. Gray (Burseraceae) is a medicinal plant native to Sonora, Mexico, with antioxidant, anti-inflammatory, and antiproliferative properties. However, the pharmacological potential of its ecotypes remains underexplored. This study evaluated the biological activity and chemical composition of ethanolic extracts from the fruit and stem of the Magdalena ecotype. Total phenolic content was quantified using the Folin–Ciocalteu method, and phenolic profiles were characterized by ESI-IT-MS. Antioxidant activity was assessed by DPPH and FRAP assays; anti-inflammatory activity was evaluated by measuring nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) levels in LPS-activated RAW 264.7 macrophages. Antiproliferative activity was tested against LS180, C-33 A, and ARPE-19 cell lines using the MTT assay. Fruit extract exhibited higher phenolic content (180.6 ± 22.0 mg GAE/g) and ferric-reducing power (FRAP = 2034.3 ± 89.7 μM Fe(II)/g), whereas the stem extract showed stronger DPPH scavenging capacity (IC50 = 52.9 ± 0.02 μg/mL). For the first time, gallic acid glucoside, kaempferol rhamnoside, quercetin rhamnoside, and isorhamentin xyloside were identified in B. microphylla fruit extract. Furthermore, the fruit extract significantly reduced NO production (93.6 ± 4.6 μg/mL) and TNF-α levels (IC50 = 101.5 ± 9.1 μg/mL). It also showed strong cytotoxicity against C-33 A (IC50 = 0.6 ± 0.07 μg/mL) and LS180 (0.7 ± 0.01 μg/mL), with lower cytotoxicity in ARPE-19 cells (77.9 ± 4.3 μg/mL). These findings highlight the therapeutic potential of the Magdalena ecotype, likely associated with its phenolic and other bioactive metabolites that require further investigation. Full article
(This article belongs to the Special Issue Advanced Research in Plant Analytical Chemistry)
Show Figures

Figure 1

14 pages, 431 KB  
Article
Sustainable Extraction of Flavonoids from Citrus Waste: A Fast and Simple Approach with UHPLC-PDA ESI-MS Characterization
by Julia Morales, Alejandro Medina and Almudena Bermejo
Sci 2025, 7(4), 156; https://doi.org/10.3390/sci7040156 - 2 Nov 2025
Abstract
Citrus fruit processing, mainly for fresh juice production in the food industry, generates significant amounts of residues and by-products enriched with bioactive components. Peels are the primary waste fraction of citrus fruits, along with discarded pulp and seeds. This study aimed to identify [...] Read more.
Citrus fruit processing, mainly for fresh juice production in the food industry, generates significant amounts of residues and by-products enriched with bioactive components. Peels are the primary waste fraction of citrus fruits, along with discarded pulp and seeds. This study aimed to identify the most fast and sustainable extraction process for flavonoids on a laboratory scale by varying the solvent and extraction methodology, and comparing the yields in order to evaluate their influence on total and individual flavonoid content. A chromatographic analysis was also performed using ultrahigh-performance liquid chromatography (UHPLC) with a 10 min run time. Our focus was on selecting the most user-friendly and cost-effective methodology. Ultrasound- and microwave-assisted extraction equipment were used with green solvents (water and ethanol) and compared for their efficiency in recovering flavonoid compounds from a mixture of peel and pulp. For this study, two widely cultivated Mediterranean citrus varieties were selected: ‘Marsh’ seedless grapefruits (Citrus paradisi Macf.) and ‘Comun’ mandarins (C. deliciosa Ten.). Lab-scale extraction results showed that ultrasound-assisted extraction with a simple ultrasonic bath, using an ethanol–water mixture provided the highest total flavonoid recovery and improved the extraction of key flavanones such as hesperidin, narirutin, and naringin. All ethanol–water mixtures tested (1:1, 7:3, and 3:7) yielded higher flavonoid levels in grapefruit (approximately 2500 mg/100 g DW) and mandarin (approximately 1200 mg/100 g DW) wastes compared with water or ethanol alone. This method offers a scalable and green strategy for valorizing citrus residues. Full article
Show Figures

Figure 1

21 pages, 549 KB  
Article
Optimisation of a One-Step Reusable Immuno-Affinity Purification Method for the Analysis and Detection of Fumonisin Mycotoxins in Foods and Feeds
by Christian Kosisochukwu Anumudu
Toxins 2025, 17(11), 538; https://doi.org/10.3390/toxins17110538 - 30 Oct 2025
Viewed by 147
Abstract
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the [...] Read more.
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the development of reliable, sensitive, and matrix–robust analytical methods remain a priority for routine monitoring in both food and feed systems. In this study, a reusable immuno-affinity purification methodology for the quantitative determination of fumonisin mycotoxins (FB1, FB2 and FB3) in foods and feeds (maize matrix) was developed. A single extraction protocol using 2% formic acid in water was employed, followed by cleanup with an immuno-affinity purification column and toxin elution by methanol/PBS (1:1, v/v). Detection and quantification of the mycotoxins was achieved by a normal phase ultra-high performance liquid chromatography coupled with electrospray ionisation triple quadrupole mass spectrometry (UHPLC/ESI-MS/MS). The chromatographic mobile phase utilised was a linear gradient of methanol/water containing 0.1% formic acid. The developed method has a limit of detection of 2.5 ng/g and a limit of quantification of 5 ng/g, all well below the European commission’s guidance values of 1000 ng/g for corn destined for human consumption and 800 ng/g for maize-based breakfast cereals and snacks. While the recovery rates of the method in this study ranged from 65–70% for the three fumonisin analogues in solutions, when tested in maize matrix, recoveries were markedly lower (~30%) due to pronounced matrix suppression. Good repeatability (standard deviation <10%) was achieved for all the fumonisin analogues. The developed method, although quick and effective in solvent systems, suffered limitations to its practical usage due to matrix suppression of the extracts derived from the immuno-affinity purification column, thus significantly reducing the application of the method in measuring fumonisin mycotoxins in food and feed samples. Overall, the method was effective in quantification of fumonisin mycotoxins in solvent solutions but not in food and feed matrices, thus necessitating further optimisation for practical usage. The performance of the developed method was compared to a commercial lateral flow immunochromatographic assay which proved to be better than the developed method in the quantification of toxins in food matrices, as the commercial lateral flow immunochromatographic assay outperformed the developed method in maize matrices. These findings highlight the need for matrix-based validation and further refinement of antibody stability to ensure robust application in regulatory monitoring of fumonisins using immunoaffinity purification methods. Full article
Show Figures

Figure 1

17 pages, 5665 KB  
Article
Insights into Variations in Chemical Profiles and Antioxidant Properties Among Different Parts of Dalbergia odorifera
by Yujie Xiao, Yakui Zhou, Jianhe Wei and Xiangsheng Zhao
Plants 2025, 14(21), 3279; https://doi.org/10.3390/plants14213279 - 27 Oct 2025
Viewed by 235
Abstract
Dalbergia odorifera, a rare and precious medicinal plant, has been used to treat cardio- and cerebrovascular diseases in China for thousands of years. D. odorifera heartwood (DOH) is usually considered to be the main part used for medicine, and other parts (leaf, [...] Read more.
Dalbergia odorifera, a rare and precious medicinal plant, has been used to treat cardio- and cerebrovascular diseases in China for thousands of years. D. odorifera heartwood (DOH) is usually considered to be the main part used for medicine, and other parts (leaf, DOL; flower, DOF; pod, DOP) of D. odorifera are neglected. In this paper, a systematic comparative study was conducted on phytochemicals and antioxidant properties of four parts of D. odorifera. A total of 72 volatile organic compounds (VOCs) and 820 nonvolatile organic compounds (NVOCs) were identified in four D. odorifera parts by GC-MS and UPLC-ESI-Q/TRAP-MS/MS, respectively. Differences in phytochemical profiles among the different parts were observed. DOH exhibited a significantly different level of trans-nerolidol and flavonoids compared to the other parts. Taking into account all the parameters measured, methanolic extracts of DOH, DOL, and DOF had good antioxidant activity, with the highest value in DOH, followed by DOL and DOF. Moreover, the strong antioxidant activity of the methanolic extract may be related to the flavonoid components. The results indicated that DOL and DOF also have potential for further development and utilization. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 1209 KB  
Article
Phytochemical Profiling of Ferula varia Extract and Its Antibiofilm Activity Against Streptococcus mutans
by Marlen K. Smagulov, Yana K. Levaya, Karakoz Zh. Badekova, Svetlana A. Ivasenko, Gayane A. Atazhanova, Vika Gabe, Margarita Yu. Ishmuratova and Tomas Kacergius
Molecules 2025, 30(21), 4178; https://doi.org/10.3390/molecules30214178 - 24 Oct 2025
Viewed by 298
Abstract
Dental caries is a major global health concern, with Streptococcus mutans playing a key role in biofilm formation and acid production, which lead to enamel demineralization. Natural products, particularly plant-derived extracts, offer promising alternatives to conventional antibacterial agents. This study aimed to analyze [...] Read more.
Dental caries is a major global health concern, with Streptococcus mutans playing a key role in biofilm formation and acid production, which lead to enamel demineralization. Natural products, particularly plant-derived extracts, offer promising alternatives to conventional antibacterial agents. This study aimed to analyze the chemical composition of Ferula varia 70% ethanol extract (FVE) and evaluate its potential to inhibit biofilm formation by S. mutans. The aerial parts of F. varia were extracted with 70% ethanol and analyzed using LC-UV-ESI-MS/MS to determine the chemical profile. The anti-biofilm activity of FVE was evaluated using a crystal violet assay against S. mutans. Phytochemical analysis identified 14 compounds, including major phenolic acids (e.g., chlorogenic acid, gallic acid) and flavonoids (e.g., isoquercitrin, isorhamnetin-3-O-glucoside). FVE exhibited significant, dose-dependent inhibition of S. mutans biofilm formation. Importantly, the FVE concentration of 5 mg/mL inhibited S. mutans biofilm development by 100%. The potent antibiofilm activity of FVE against S. mutans is likely due to the synergistic action of its rich content of phenolic acids and flavonoids, which possess known anti-virulence properties. These findings support the potential use of FVE as a natural ingredient in oral hygiene products to prevent dental plaque and caries. Full article
Show Figures

Graphical abstract

17 pages, 1383 KB  
Article
Determination of Gnetol in Murine Biological Matrices by Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS): Application in a Biodistribution Study
by Boyu Liao, Hongrui Jin, Huan Chen, Yuxin Zhang, Xuexian Deng, Jingyi Yao, Na Li, Shaoshu Xu, Jingbo Wang, Mingming Gao, Xiaoying Zhang, Paul C. L. Ho, Hui Liu and Hai-Shu Lin
Int. J. Mol. Sci. 2025, 26(21), 10358; https://doi.org/10.3390/ijms262110358 - 24 Oct 2025
Viewed by 221
Abstract
Gnetol (trans-2,3′,5′,6-tetrahydroxystilbene), a naturally occurring stilbene structurally related to resveratrol (trans-3,5,4′-trihydroxystilbene; RES), has been reported to possess multiple health-promoting activities. In order to support its potential nutraceutical application, a reliable chromatography–tandem mass spectrometry (LC–MS/MS) assay was developed and validated [...] Read more.
Gnetol (trans-2,3′,5′,6-tetrahydroxystilbene), a naturally occurring stilbene structurally related to resveratrol (trans-3,5,4′-trihydroxystilbene; RES), has been reported to possess multiple health-promoting activities. In order to support its potential nutraceutical application, a reliable chromatography–tandem mass spectrometry (LC–MS/MS) assay was developed and validated for the quantitative determination of gnetol in mouse plasma and tissue samples, using isotopically labeled RES-13C6 serving as the internal standard (IS). Electrospray ionization (ESI) was performed in negative mode, with multiple reaction monitoring (MRM) transitions m/z 243.2 → 175.0 for gnetol and m/z 233.1 → 191.0 for the IS. Chromatographic separation was achieved on a reversed-phase HPLC column using a 5-min gradient delivery of acetonitrile and 2 mM ammonium acetate at 0.5 mL/min and 40 °C. The linear calibration curve covered the concentration range of 5.0–1500 ng/mL, and the method validation confirmed its selectivity, accuracy, precision, stability, and dilution integrity. The developed method was subsequently applied to a biodistribution study in mice after oral administration of gnetol at 400 µmol/kg (equivalent to 97.7 mg/kg). Gnetol was rapidly absorbed and extensively distributed in key pharmacologically relevant organs. Despite its poor aqueous solubility, oral uptake was not significantly hindered. Collectively, these findings demonstrate that gnetol exhibits favorable absorption and tissue distribution profiles, supporting its promise as a candidate for nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolics and Polyphenols 2025)
Show Figures

Figure 1

18 pages, 1907 KB  
Article
Outer Membrane Vesicles, Lipidome, and Biofilm Formation in the Endophyte Enterobacter Cloacae SEA01 from Agave Tequilana
by Kátia R. Prieto, Hellen P. Valério, Adriano B. Chaves-Filho, Marcos Y. Yoshinaga, Sayuri Miyamoto, Fernanda M. Prado, Itzel Zaizar-Castañeda, Paul Montaño-Silva, América Martinez-Rodriguez, Mario Curiel, Marisa H. G. Medeiros, Flavia V. Winck, Paolo Di Mascio and Miguel J. Beltran-Garcia
Microorganisms 2025, 13(11), 2432; https://doi.org/10.3390/microorganisms13112432 - 23 Oct 2025
Viewed by 355
Abstract
Bacterial outer-membrane vesicles (OMVs) mediate stress tolerance, biofilm formation, and interkingdom communication, but their role in beneficial endophytes remains underexplored. We isolated 11 non-redundant isolates associated with Bacillus, Enterococcus, Kosakonia and Kocuria from Agave tequilana seeds, identified by MALDI-TOF MS and [...] Read more.
Bacterial outer-membrane vesicles (OMVs) mediate stress tolerance, biofilm formation, and interkingdom communication, but their role in beneficial endophytes remains underexplored. We isolated 11 non-redundant isolates associated with Bacillus, Enterococcus, Kosakonia and Kocuria from Agave tequilana seeds, identified by MALDI-TOF MS and 16S rRNA gene sequencing. We focused on the catalase-negative Enterobacter cloacae SEA01, which exhibits plant-promoting traits and support agave growth under nutrient-poor microcosms. In addition, this endophyte produces OMVs. Time-resolved SEM documented OMV release and cell aggregation within 9 h, followed by mature biofilms at 24 h with continued vesiculation. Purified OMVs (≈80–300 nm) contained extracellular DNA and were characterized by dynamic light scattering and UHPLC–ESI–QTOF-MS lipidomics. The OMV lipidome was dominated by phosphatidylethanolamine (~80%) and was enriched in monounsaturated fatty acids (16:1, 18:1), while the stress-associated cyclopropane fatty acids (17:1, 19:1) were comparatively retained in the whole-cell membranes; OMVs also exhibited reduced ubiquinone-8. SEA01 is catalase-negative, uncommon among plant-associated Enterobacter, suggesting a testable model in which oxidative factors modulate OMV output and biofilm assembly. These may have implications for recognition and redox signaling at the root interface. Future works should combine targeted proteomics/genomics with genetic or chemical disruption of catalase/OMV pathways. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

33 pages, 3443 KB  
Article
Virulence and Stress-Related Proteins Are Differentially Enriched and N-Terminally Acetylated in Extracellular Vesicles from Virulent Paracoccidioides brasiliensis
by Carla E. Octaviano-Azevedo, Karolina R. F. Beraldo, Natanael P. Leitão-Júnior, Cássia M. de Souza, Camila P. da Silva, Rita C. Sinigaglia, Erix A. Milán Garcés, Evandro L. Duarte, Alexandre K. Tashima, Maria A. Juliano and Rosana Puccia
J. Fungi 2025, 11(10), 751; https://doi.org/10.3390/jof11100751 - 21 Oct 2025
Viewed by 495
Abstract
Extracellular vesicles (EVs) are bilayer-membrane cellular components that deliver protected cargo to the extracellular environment and can mediate long-distance signaling. We have previously reported that EVs isolated from the virulent fungal pathogen Paracoccidioides brasiliensis Vpb18 can revert the expression, in the attenuated variant [...] Read more.
Extracellular vesicles (EVs) are bilayer-membrane cellular components that deliver protected cargo to the extracellular environment and can mediate long-distance signaling. We have previously reported that EVs isolated from the virulent fungal pathogen Paracoccidioides brasiliensis Vpb18 can revert the expression, in the attenuated variant Apb18, of stress-related virulence traits. We presently show that the Vev and Aev, respectively, produced by these variants display distinct proteomes, with prevalent functional enrichment in Vev related to oxidative stress response, signal transduction, transport, and localization, in addition to richer protein–protein interaction. Proteome sequences were obtained by nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-ESI-MS/MS). The Vev and corresponding Vpb18 proteomes also differed, suggesting a selective bias in vesicle protein cargo. Moreover, sublethal oxidative (VevOxi) and nitrosative (VevNO) stress modulated the Vev proteome and a positive correlation between VevOxi/VevNO-enriched and Vev-enriched (relative to Aev) proteins was observed. Out of 145 fungal virulence factors detected in Vev, 64% were enriched, strongly suggesting that molecules with virulence roles in Paracoccidioides are selectively concentrated in Vev. Our study significantly advanced the field by exploring protein N-terminal acetylation to a dimension rarely investigated in fungal EV proteomics. The proportion of N-terminally acetylated proteins in Vev was higher than in Vpb18 and the presence of Nt-acetylation in Vev-enriched virulence factors varied across the samples, suggesting that it might interfere with protein sorting into EVs and/or protein functionality. Our findings highlight the relevance of our fungal model to unraveling the significance of fungal EVs in pathogenesis and phenotypic transfer. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

30 pages, 5192 KB  
Article
Rational Design, Computational Analysis and Antibacterial Activities of Synthesized Peptide-Based Molecules Targeting Quorum Sensing-Dependent Biofilm Formation in Pseudomonas aeruginosa
by Shokhan Jamal Hamid, Twana Mohsin Salih and Tavga Ahmed Aziz
Pharmaceuticals 2025, 18(10), 1572; https://doi.org/10.3390/ph18101572 - 18 Oct 2025
Viewed by 310
Abstract
Background/Objective: The rise in bacterial resistance necessitates novel therapeutic strategies beyond conventional antibiotics. Antimicrobial peptides represent promising candidates but face challenges such as instability, enzymatic degradation, and host toxicity. To overcome these limitations, conjugation and structural modifications are being explored. This study focuses [...] Read more.
Background/Objective: The rise in bacterial resistance necessitates novel therapeutic strategies beyond conventional antibiotics. Antimicrobial peptides represent promising candidates but face challenges such as instability, enzymatic degradation, and host toxicity. To overcome these limitations, conjugation and structural modifications are being explored. This study focuses on designing peptide-based inhibitors of the quorum-sensing (QS) regulator LasR in Pseudomonas aeruginosa, a key mediator of biofilm formation and antibiotic resistance. Methods: Rationally designed tripeptides and dipeptides conjugated with coumarin-3-carboxylic acid and dihydro-3-amino-2-(3H)-furanone were evaluated using molecular docking. The most promising ligand–protein complexes were further analyzed using molecular dynamics (MD) simulations conducted with the CHARMM-GUI and AMBER tools to assess the stability of the ligand–protein complex systems, and the binding affinities were evaluated using Molecular Mechanics–Poisson Boltzmann Surface Area (MM-PBSA) calculations. Pharmacokinetic and toxicity profiles were predicted using ADMETLab 3.0. Selected compounds were synthesized via solid-phase peptide synthesis, structurally confirmed by 1H NMR and ESI-MS, and tested for antibacterial and antibiofilm activity against P. aeruginosa ATCC 27853. Results: Computational analyses identified several promising inhibitors with stronger binding affinities than the native autoinducer OdDHL. Coumarin conjugates C004 and C006 showed superior docking scores, while MM-PBSA indicated P004 and C004 had the most favorable binding energies. MD simulations confirmed stable ligand–protein complexes. ADMET predictions highlighted C004 and C006 as having excellent pharmacokinetic properties. Experimental assays showed moderate antibacterial activity (MIC 512–1024 µg/mL) and strong antibiofilm inhibition, particularly for C004 (83% inhibition at ½ MIC). Conclusions: The study demonstrates that peptide–coumarin conjugates, especially C004, are promising tools for disrupting QS and biofilm formation in P. aeruginosa. Further optimization and in vivo validation are needed to advance these compounds toward therapeutic application. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

13 pages, 3020 KB  
Article
Cytokinins Are Age- and Injury-Responsive Molecules That Regulate Skeletal Myogenesis
by Farnoush Kabiri, Zeynab Azimychetabi, Dev Seneviratne, Lorna N. Phan, Hannah M. Kavanagh, Hannah C. Smith, R. J. Neil Emery, Craig R. Brunetti, Janet Yee and Stephanie W. Tobin
Int. J. Mol. Sci. 2025, 26(20), 10136; https://doi.org/10.3390/ijms262010136 - 18 Oct 2025
Viewed by 301
Abstract
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of [...] Read more.
Myogenesis is a tightly regulated process essential for embryonic development, postnatal growth, and muscle regeneration. We recently identified that cytokinins (CTKs), a class of adenine-derived signaling molecules originally characterized in plants, are present in cultured skeletal muscle cells. The most abundant type of cytokinins detected within cultured muscle cells was isopentenyladenine (iP) in its nucleotide, riboside, and free base derivatives. The purpose of this study was to determine whether CTKs are also present in regenerating muscle tissue in vivo and to characterize the effects of iP and its riboside form, isopentenyladenosine (iPR), on muscle cell proliferation and differentiation. These effects were observed relative to adenine and adenosine, and to a second class of cytokinins with a large aromatic side chain, kinetin (the free base), and kinetin riboside. Cardiotoxin was used to induce muscle injury and repair processes in the gastrocnemius of 3- and 12-month-old mice. Samples were collected 3- and 7 days post-injury for ultra high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-(ESI+)-HRMS/MS). Four CTKs (N6-benzyladenine (BA), dihydrozeatin-9-N-glucoside (DZ9G), isopentenyladenosine (iPR), and 2-methylthio-isopentenyladenosine (2-MeSiPR) were detected. 2-MeSiPR levels were significantly influenced by aging, as this CTK was increased in response to injury only in the younger mice. Treatment of C2C12 myoblasts with 10 µM of isopentenyladenosine (iPR) or kinetin riboside reduced cell proliferation, whereas iP (the free base) increased proliferation in a biphasic response. During differentiation, both iPR and kinetin riboside impaired myotube formation, while the free-base forms of iP and kinetin had no effect. Our data establishes that CTKs are present within muscle tissue and highly responsive to injury and aging. Furthermore, the biological activities of CTKs in muscle cells are influenced by structural modifications, including riboside conjugation and side chain composition. Understanding these differences provides insight into the distinct roles of CTKs in muscle cell metabolism and differentiation, offering potential implications for the use of exogenous CTKs in muscle biology and regenerative medicine. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

14 pages, 1658 KB  
Article
Isolation and In Vitro Activity of Sesquiterpene Lactones from Eremanthus crotonoides as SARS-CoV-2 Protease Inhibitors and Cytotoxic Agents
by Patricia Homobono Brito de Moura, Natalie Giovanna da Rocha Ximenes, Beatriz Bastos Santos, Carla Monteiro Leal, Larissa Esteves Carvalho Constant, Stephany da Silva Costa, Shaft Corrêa Pinto, Michelle Frazao Muzitano, Diego Allonso, Ludger A. Wessjohann and Ivana Correa Ramos Leal
Molecules 2025, 30(20), 4053; https://doi.org/10.3390/molecules30204053 - 11 Oct 2025
Viewed by 367
Abstract
The Jurubatiba Sandbank National Park (PARNA Jurubatiba) is an ecological reserve characterized by harsh environmental conditions, including low rainfall, high sun exposure, and sandy soil. Among its native vegetation, Eremanthus crotonoides stands out for its richness in flavonoids, phenolic compounds, and sesquiterpene lactones. [...] Read more.
The Jurubatiba Sandbank National Park (PARNA Jurubatiba) is an ecological reserve characterized by harsh environmental conditions, including low rainfall, high sun exposure, and sandy soil. Among its native vegetation, Eremanthus crotonoides stands out for its richness in flavonoids, phenolic compounds, and sesquiterpene lactones. The objective of this study was to isolate and quantify sesquiterpene lactones from this species using 1H NMR and to investigate their anti-SARS-CoV-2 potential and cytotoxicity against cancer cells. UPLC-(ESI)-MS/MS analyses enabled metabolite annotation, and semi-preparative HPLC-DAD allowed the isolation of centratherin and goyazensolide, which were identified by 1D and 2D NMR. In vitro assays showed that centratherin at 10 µM concentration reduced the viability of PC-3 and HCT-116 cancer cells by 100%, while goyazensolide had no noteworthy effects. Furthermore, enzymatic inhibition assays on SARS-CoV2 targets revealed that centratherin exhibited a lower apparent IC50 of 12 µM against PLpro, while goyazensolide was more active against 3CLpro, with an IC50 of 71 µM. Notably, the dichloromethane fraction demonstrated promising activity against both enzymes, with IC50 values of 30 µM for PLpro and 11 µM for 3CLpro. This study reports, for the first time, the isolation of goyazensolide from E. crotonoides and highlights the potential of both sesquiterpene lactones as SARS-CoV-2 enzyme inhibitors. In contrast to centratherin, goyazensolide fortunately had almost no cytotoxic effects at inhibition concentration on the cells tested. This shows that anticancer and anti-SARS effects can be separated and should have different SARs, an important prerequisite for further development. Full article
Show Figures

Figure 1

15 pages, 13148 KB  
Article
Scaffold-Free Bone Regeneration Through Collaboration Between Type IV Collagen and FBXL14
by Mari Akiyama
J. Clin. Med. 2025, 14(20), 7160; https://doi.org/10.3390/jcm14207160 - 11 Oct 2025
Viewed by 401
Abstract
Background: The periosteum and periosteum-derived cells have attracted considerable attention for their potential use in clinical applications for treating bone defects. Bovine periosteum-derived cells have been investigated because of their capability for scaffold-free bone regeneration. Previous mass spectrometry (MS) and immunohistochemistry studies [...] Read more.
Background: The periosteum and periosteum-derived cells have attracted considerable attention for their potential use in clinical applications for treating bone defects. Bovine periosteum-derived cells have been investigated because of their capability for scaffold-free bone regeneration. Previous mass spectrometry (MS) and immunohistochemistry studies have shown the presence of F-box/leucine-rich repeat protein 14 (FBXL14) in bovine periosteum and periosteum-derived cells. Recently, studies using ESI-Q-Orbitrap MS suggested the presence of type IV collagen in the periosteum. The aim of the present study was to clarify the relationship between type IV collagen and FBXL14 in the formation of periosteum-derived cells. Methods: Bovine periosteum-derived cells were obtained from Japanese Black Cattle’s legs in Medium 199 with ascorbic acid and 10% fetal bovine serum. Immunohistochemistry for type IV collagen and FBXL14 was performed using bovine bone with periosteum and periosteum alone for explant culture. Results: Both type IV collagen and FBXL14 were expressed in Volkmann’s canals and the Haversian canals in bone and periosteum. After 5 weeks, type IV collagen and FBXL14 surrounded crystals containing osteocalcin and had formed periosteum-derived cells. Von Kossa staining and immunostaining of osteocalcin revealed that the crystals contained calcified substances and osteocalcin. Conclusions: Clinically, understanding osteocalcin-interacting proteins will help promote bone regeneration. Interactions between type IV collagen and FBXL14 may contribute to scaffold-free bone regeneration. Full article
Show Figures

Figure 1

11 pages, 1808 KB  
Article
Ultrasound-Assisted Extraction Optimization and Flash Chromatography Fractionation of Punicalagin from Pomegranate Peel (Punica granatum L.)
by Erick M. Raya-Morquecho, Pedro Aguilar-Zarate, Leonardo Sepúlveda, Mariela R. Michel, Anna Iliná, Cristóbal N. Aguilar and Juan A. Ascacio-Valdés
Separations 2025, 12(10), 279; https://doi.org/10.3390/separations12100279 - 11 Oct 2025
Viewed by 518
Abstract
Background: Pomegranate peel (Punica granatum L.) is a rich source of phenols, particularly ellagitannins, highlighting punicalagin, a bioactive compound with recognized antioxidant potential. However, efficient recovery and purification methods are required to enable its application in food and health-related products. This study [...] Read more.
Background: Pomegranate peel (Punica granatum L.) is a rich source of phenols, particularly ellagitannins, highlighting punicalagin, a bioactive compound with recognized antioxidant potential. However, efficient recovery and purification methods are required to enable its application in food and health-related products. This study aimed to obtain a partially purified fraction of punicalagin from pomegranate peel using optimized extraction and purification strategies. Methods: A Taguchi L9 (3)3 experimental design was employed to optimize ultrasound-assisted extraction, evaluating extraction time (10, 20, 30 min), ethanol concentration (20, 40, 80%), and solid-to-solvent ratio (1:12, 1:14, 1:16). Total polyphenol content was quantified using the Folin–Ciocalteu method. Extracts obtained under optimized conditions were concentrated by rotary evaporation and subjected to semipurification using flash chromatography with Amberlite XAD-16 resin. Subsequently, the fractions were lyophilized and analyzed by HPLC/ESI/MS. Results: The Statistica software determined the optimal conditions for polyphenol extraction (20 min, 40% ethanol, 1:12), with the signal-to-noise (S/N) ratio reaching 88.43 ± 0.66, surpassing the predicted value of 77.42. Flash chromatography yielded four fractions, and HPLC/ESI/MS analysis revealed the presence of ellagitannins in all of them, with fraction number 2 showing the highest relative abundance of punicalagin (89.25%). Conclusions: The combination of ultrasound-assisted extraction and flash chromatography proved effective for obtaining punicalagin-rich fractions from pomegranate peel, supporting its potential for nutraceutical applications. Full article
Show Figures

Figure 1

22 pages, 3371 KB  
Article
Targeted Chemical Profiling and Dereplication of Australian Plants of the Family Haemodoraceae Using a Combined HPLC-MS and HRLC(ESI)-MS Approach
by Liam Thompson, Valerie Chow, Shan Chen, Priyanka Reddy, Robert Brkljača, Colin Rix, Joseph J. Byrne, Aya C. Taki, Robin B. Gasser and Sylvia Urban
Molecules 2025, 30(20), 4044; https://doi.org/10.3390/molecules30204044 - 10 Oct 2025
Viewed by 314
Abstract
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty [...] Read more.
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty individual ethanolic extracts from six separate species of Australian plants belonging to the family Haemodoraceae was conducted using an HPLC-MS approach reinforced by HRLC(ESI)-MS. Six of the extracts were further explored by employing HRLC(ESI)-MS and the compounds present were characterised and confirmed based on a comparison to the original data. All thirty extracts were assessed for biological activity against the parasitic nematode Haemonchus contortus in vitro. The chemical profiling methodology adopted resulted in the identification of thirty-four previously reported compounds, identifying on average 64% of the previously reported secondary metabolites across the species Haemodorum simulans, Haemodorum spicatum, Haemodorum brevisepalum and Macropidia fuliginosa. Furthermore, compounds from the phenylbenzoisoquinolindone class were detected in the bulbs of Haemodorum simulans and Haemodorum coccineum, representing the first report of the structure class in extracts of the genus Haemodorum. Extracts of the H. simulans stems, M. fuliginosa bulbs and H. distichophyllum roots and bulbs exhibited anthelmintic activity in vitro. The chemical profiling HPLC-MS methodology adopted was successful in the rapid identification of most of the previously reported secondary metabolites across the Haemodoracae species, indicating that the analytical approach was robust. This study demonstrates the effectiveness of dereplication via HPLC-MS-based chemical profiling across six Australian Haemodoraceae species, identifying numerous known and putatively novel secondary metabolites. It also reports, for the first time, anthelmintic activity in selected species and marks the first detailed phytochemical investigation of H. distichophyllum since its initial pigment analysis over 50 years ago. Full article
Show Figures

Graphical abstract

Back to TopTop