Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (368)

Search Parameters:
Keywords = Early Cretaceous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 13854 KB  
Article
Middle Paleolithic Neanderthal Open-Air Camp and Hyena Den Westeregeln (D)—Competition for Prey in a Mammoth Steppe Environment of Northern Germany (Central Europe)
by Cajus G. Diedrich
Quaternary 2025, 8(4), 52; https://doi.org/10.3390/quat8040052 - 24 Sep 2025
Viewed by 421
Abstract
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed [...] Read more.
A gypsum karst sinkhole at Westeregeln (north-central Germany) was filled during the Late Pleistocene, first by fluvial flooding, then by solifluctation, and finally with wind-transported loess. Pleistocene mollusks and bones of snakes, birds, micro- and macromammals, and hyena coprolites were accumulated, often mixed in gravel or sand layers with Middle Paleolithic artifacts, whereas ice wedges reach deep into the sinkhole. The high amount of small flint debris prove on-site tool production by using 99% local Saalian transported brownish-to-dark Upper Cretaceous flint, which could have been collected from the Bode River gravels near-site. Only a single quartzite and one jasper flake prove other local gravel sources or importation. A large bifacial flaked knife of layer 4 dates to the early/middle Weichselian/Wuermian (MIS 5-4), similar to two triangular handaxes in the MTA tradition and an absolutely dated woolly rhinoceros bone (50,310 + 1580/−1320 BP). A cold period of Late Pleistocene glacial mammoth steppe megafauna is represented, but the material is mostly strongly fragmented and smashed by humans. Neanderthal camp use on the gypsum hill is indicated also by small charcoal pieces, burned bone fragments, and fire-dehydrated flint fragments. Crocuta crocuta spelaea (Goldfuss) hyenas are well known from Westeregeln, with an open-air commuting den site, which was marked with feces. Full article
Show Figures

Figure 1

23 pages, 9916 KB  
Article
Mineralization Age and Ore-Forming Material Source of the Yanshan Gold Deposit in the Daliuhang Gold Field in the Jiaodong Peninsula, China: Constraints from Geochronology and In Situ Sulfur Isotope
by Bin Wang, Zhengjiang Ding, Qun Yang, Zhongyi Bao, Junyang Lv, Yina Bai, Shunxi Ma and Yikang Zhou
Minerals 2025, 15(9), 941; https://doi.org/10.3390/min15090941 - 4 Sep 2025
Viewed by 508
Abstract
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled [...] Read more.
The newly discovered Yanshan gold deposit within the Qixia–Penglai mineralization belt is situated within the Daliuhang goldfield of Daliuhang Town, approximately 45 km southeast of Penglai City, the Jiaodong Peninsula. Quartz-vein–type gold orebodies are mainly distributed among the Guojialing granite and are controlled by NNE-trending faults. Native gold primarily occurs within the interiors of pyrite grains, forming inclusion gold and fracture gold. In this study, LA-ICP-MS zircon U-Pb dating and in situ sulfur isotope analysis of gold-bearing pyrite were conducted to constrain the ore genesis of the Yanshan gold deposit. Guojialing monzogranite and porphyritic granodiorite yielded weighted mean 206Pb/238U ages of 130 ± 2 Ma (MSWD = 1.8) and 131 ± 2 Ma (MSWD = 1.8), respectively, indicating that magmatism and gold mineralization occurred during the Early Cretaceous period. The in situ sulfur δ34S values of euhedral crystalline pyrite (Py1) formed in the early stage ranged from 3.21% to 5.35‰ (n = 11), while the in situ sulfur δ34S values of pyrite (Py2) formed in the later stage ranged from 6.32‰ to 9.77‰ (n = 10), suggesting that the sulfur of the Yanshan gold deposit primarily originates from magmatism, with contamination from stratigraphic materials. Granitoids are highly likely to provide the thermal drive for fluid activity; however, the origins of the fluids and ore-forming materials remain difficult to determine. Based on geological features, geochronological data, and in situ sulfur isotopic analysis, this study concludes that the Yanshan gold deposit is a mesothermal magmatic hydrothermal vein-type gold deposit. The mineralization of the Yanshan gold deposit is related to the subduction of the Mesozoic Paleo-Pacific Plate beneath the Eurasian continent and is mainly controlled by steep dip faults. This study provides theoretical guidance for further exploration and prospecting of the Yanshan gold deposit. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 12589 KB  
Article
When Big Rivers Started to Drain to the Arctic Basin: A View from the Kara Sea
by Victoria Ershova, Daniel Stockli, Carmen Gaina, Andrey Khudoley and Sergey Shimanskiy
Geosciences 2025, 15(9), 342; https://doi.org/10.3390/geosciences15090342 - 2 Sep 2025
Viewed by 478
Abstract
This study provides new constraints on the paleogeographic evolution of the Arctic during the Mesozoic. U–Pb geochronology of detrital zircon and rutile grains, together with (U–Th)/He zircon thermochronological data from the uppermost Middle Jurassic to Cretaceous strata of the Sverdrup well in the [...] Read more.
This study provides new constraints on the paleogeographic evolution of the Arctic during the Mesozoic. U–Pb geochronology of detrital zircon and rutile grains, together with (U–Th)/He zircon thermochronological data from the uppermost Middle Jurassic to Cretaceous strata of the Sverdrup well in the Kara Sea, reveals a major shift in sediment provenance. Two distinct age populations of detrital zircon define this transition: Group 1 (Middle Jurassic–Hauterivian) shows dominant Neoproterozoic–Cambrian (ca. 700–500 Ma) and Paleozoic (ca. 350–290 Ma) peaks, whereas Group 2 (Aptian–Albian) is characterized by prominent Paleoproterozoic (ca. 1980–1720 Ma), Paleozoic (ca. 350–255 Ma), and Early Mesozoic (ca. 240–115 Ma) ages. Corresponding variations in (U–Th)/He zircon ages—from a Triassic peak (~225 Ma) in Group 1 to a dominant Early Cretaceous peak (~140 Ma) in Group 2—support a switch from a proximal to more distal sediment source. We propose that the emergence of large continent-scale river systems transported clastic material from the southern margin of the Siberian Craton to the Arctic Ocean starting in the late Early Cretaceous. The development of a significant freshwater supply potentially initiated a thick low-salinity layer within the surface waters of the central Arctic Ocean, possibly leading to the onset of a strong salinity stratification of near-surface water masses as in the modern Arctic Ocean. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

19 pages, 3882 KB  
Article
Olivine and Whole-Rock Geochemistry Constrain Petrogenesis and Geodynamics of Early Cretaceous Fangcheng Basalts, Eastern North China Craton
by Qiao-Chun Qin, Lu-Bing Hong, Yin-Hui Zhang, Hong-Xia Yu, Dan Wang, Le Zhang and Peng-Li He
Minerals 2025, 15(9), 928; https://doi.org/10.3390/min15090928 - 30 Aug 2025
Viewed by 504
Abstract
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through [...] Read more.
The profound Phanerozoic destruction of the eastern North China Craton (NCC) is well documented, yet its mechanism remains debated due to limited constraints on thermal state and lithospheric thickness during the Early Cretaceous—the peak period of cratonic destruction. We address this gap through integrated geochemical analysis (major/trace elements, Sr-Nd-Pb isotopes, olivine chemistry) of Early Cretaceous (~125 Ma) Fangcheng basalts from Shandong. These basalts possess high MgO (8.14–11.31 wt%), Mg# (67.23–73.69), Ni (126–244 ppm), and Cr (342–526 ppm). Their trace elements show island arc basalt (IAB) affinities: enrichment in large-ion lithophile elements and depletion in high-field-strength elements, with negative Sr and Pb anomalies. Enriched Sr-Nd isotopic compositions [87Sr/86Sr(t) = 0.709426–0.709512; εNd(t) = −12.60 to −13.10], unradiogenic 206Pb/204Pb(t) and 208Pb/204Pb(t) ratios (17.55–17.62 and 37.77–37.83, respectively), and slightly radiogenic 207Pb/204Pb(t) ratios (15.55–15.57) reflect an upper continental crustal signature. Covariations of major elements, Cr, Ni, and trace element ratios (Sr/Nd, Sc/La) with MgO indicate dominant olivine + pyroxene fractionation. High Ce/Pb ratios and lack of correlation between Ce/Pb or εNd(t) and SiO2 preclude significant crustal contamination. The combined isotopic signature and IAB-like trace element patterns support a lithospheric mantle source that was metasomatized by upper crustal material. Olivine phenocrysts exhibit variable Ni (1564–4786 ppm), Mn (903–2406 ppm), Fe/Mn (56.63–85.49), 10,000 × Zn/Fe (9.55–19.55), and Mn/Zn (7.07–14.79), defining fields indicative of melts from both peridotite and pyroxenite sources. High-MgO samples (>10 wt%) in the Grossular/Pyrope/Diopside/Enstatite diagram show a clinopyroxene, garnet, and olivine residue. Reconstructed primary melts yield formation pressures of 3.5–3.9 GPa (110–130 km depth) and temperatures of 1474–1526 °C, corresponding to ~60 mW/m2 surface heat flow. This demonstrates retention of a ≥110–130 km thick lithosphere during peak destruction, arguing against delamination and supporting a thermo-mechanic erosion mechanism dominated by progressive convective thinning of the lithospheric base via asthenospheric flow. Our findings therefore provide crucial thermal and structural constraints essential for resolving the dynamics of cratonic lithosphere modification. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

33 pages, 26241 KB  
Article
Evaluation of Hydrocarbon Entrapment Linked to Hydrothermal Fluids and Mapping the Spatial Distribution of Petroleum Systems in the Cretaceous Formation: Implications for the Advanced Exploration and Development of Petroleum Systems in the Kurdistan Region, Iraq
by Zana Muhammad, Namam Salih and Alain Préat
Minerals 2025, 15(9), 908; https://doi.org/10.3390/min15090908 - 27 Aug 2025
Viewed by 635
Abstract
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq [...] Read more.
This study utilizes high-resolution X-ray computed tomography (CT) to evaluate the reservoir characterization in heterogenous carbonate rocks. These rocks show a diagenetic alteration that influences the reservoir quality in the Cretaceous Qamchuqa–Bekhme formations in outcrop and subsurface sections (Gali-Bekhal, Bekhme, and Taq Taq oilfields, NE Iraq). The scanning of fifty-one directional line analyses was conducted on three facies: marine, early diagenetic (non-hydrothermal), and late diagenetic (hydrothermal dolomitization, or HTD). The facies were analyzed from thousands of micro-spot analyses (up to 5250) and computed tomographic numbers (CTNs) across vertical, horizontal, and inclined directions. The surface (outcrop) marine facies exhibited CTNs ranging from 2578 to 2982 Hounsfield Units (HUs) (Av. 2740 HU), with very low average porosity (1.20%) and permeability (0.14 mD) values, while subsurface marine facies showed lower CTNs (1446–2556 HU, Av. 2360 HU) and higher porosity (Av. 8.40%) and permeability (Av. 1.02 mD) compared to the surface samples. Subsurface marine facies revealed higher porosity, lower density, and considerably enhanced conditions for hydrocarbon storage. The CT measurements and petrophysical properties in early diagenesis highlight a considerable porous system in the surface compared to the one in subsurface settings, significantly controlling the quality of the reservoir storage. The late diagenetic scanning values coincide with a saddle dolomite formation formed under high temperature conditions and intensive rock–fluid interactions. These dolomites are related to a hot fluid and are associated with intensive fracturing, vuggy porosities, and zebra-like textures. These textures are more pronounced in the surface than the subsurface settings. A surface evaluation showed a wide CTN range, accompanied by an average porosity of up to 15.47% and permeability of 301.27 mD, while subsurface facies exhibited a significant depletion in the CTN (<500 HU), with an average porosity of about 14.05% and permeability of 91.56 mD. The petrophysical characteristics of the reservoir associated with late-HT dolomitization (subsurface setting) show two populations. The first one exhibited CTN values between 1931 and 2586 HU (Av. 2341 HU), with porosity ranging from 3.10 to 18.43% (Av. 8.84%) and permeability from 0.08 to 2.39 mD (Av. 0.31 mD). The second one recorded a considerable range of CTNs from 457 to 2446 HU (Av. 1823 HU), with porosity from 6.38 to 52.92% (Av. 20.97%) and permeability from 0.16 to 5462.62 mD (Av. 223.11 mD). High temperatures significantly altered the carbonate rock’s properties, with partial/complete occlusion of the porous vuggy and fractured networks, enhancing or reducing the reservoir quality and its storage. In summary, the variations in the CTN across both surface and subsurface facies provide new insight into reservoir heterogeneity and characterization, which is a fundamental factor for understanding the potential of hydrocarbon storage within various geological settings. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

17 pages, 3187 KB  
Article
Tectonic Uplift and Hydrocarbon Generation Constraints from Low-Temperature Thermochronology in the Yindongzi Area, Ordos Basin
by Guangyuan Xing, Zhanli Ren, Kai Qi, Liyong Fan, Junping Cui, Jinbu Li, Zhuo Han and Sasa Guo
Minerals 2025, 15(9), 893; https://doi.org/10.3390/min15090893 - 22 Aug 2025
Viewed by 643
Abstract
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area [...] Read more.
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area exhibits a complex structural framework shaped by multiple deformation events, leading to the formation of extensively developed fault systems. Such faulting can adversely affect hydrocarbon preservation. To better constrain the timing of fault reactivation in this area, we carried out an integrated study involving low-temperature thermochronology and burial history modeling. The results reveal a complex, multi-phase thermal-tectonic evolution since the Late Paleozoic. The ZHe ages (291–410 Ma) indicate deep burial and heating related to Late Devonian–Early Permian tectonism and basin sedimentation, reflecting early orogenic activity along the western North China Craton. During the Late Jurassic to Early Cretaceous (165–120 Ma), the study area experienced widespread and differential uplift and cooling, controlled by the Yanshanian Orogeny. Samples on the western side of the fault show earlier and more rapid cooling than those on the eastern side, suggesting a fault-controlled, basinward-propagating exhumation pattern. The cooling period indicated by AHe data and thermal models reflects the Cenozoic uplift, likely induced by far-field compression from the rising northeastern Tibetan Plateau. These findings emphasize the critical role of inherited faults not only as thermal-tectonic boundaries during the Mesozoic but also as a pathway for hydrocarbon migration. Meanwhile, thermal history models based on borehole data further reveal that the study area underwent prolonged burial and heating during the Mesozoic, reaching peak temperatures for hydrocarbon generation in the Late Jurassic. The timing of major cooling events corresponds to the main stages of hydrocarbon expulsion and migration. In particular, the differential uplift since the Mesozoic created structural traps and migration pathways that likely facilitated hydrocarbon accumulation along the western fault zones. The spatial and temporal differences among the samples underscore the structural segmentation and dynamic response of the continental interior to both regional and far-field tectonic forces, while also providing crucial constraints on the petroleum system evolution in this tectonically complex region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 20084 KB  
Article
Phase Evolution History of Deep-Seated Hydrocarbon Fluids in the Western Junggar Basin: Insights from Geochemistry, PVT, and Basin Modeling
by Maoguo Hou, Xiujian Ding, Chenglin Chu, Jie Wang, Jiwen Huang, Hailei Liu, Wenlong Jiang, Ming Zha, Gang Yue and Keshun Liu
Processes 2025, 13(8), 2667; https://doi.org/10.3390/pr13082667 - 21 Aug 2025
Viewed by 455
Abstract
Clarifying the phase evolution history of hydrocarbon fluids helps formulate exploration and development strategies. The discovery of the Xinguang Gas Field marks a significant breakthrough in the Western Junggar Basin. However, the phase evolution history of this gas field remains unclear, which hinders [...] Read more.
Clarifying the phase evolution history of hydrocarbon fluids helps formulate exploration and development strategies. The discovery of the Xinguang Gas Field marks a significant breakthrough in the Western Junggar Basin. However, the phase evolution history of this gas field remains unclear, which hinders the formulation of subsequent exploration strategies. This study employs a comprehensive approach, combining organic geochemistry, fluid inclusions, basin modeling, and PVT testing and simulation, to investigate the characteristics and phase behavior of deep-seated hydrocarbon fluids in this gas field. It also examines the charging history, compositional evolution, and temperature and pressure histories of the reservoir, thereby clarifying the phase transition process of hydrocarbon fluids in the Xinguang Gas Field. This study finds that the deep-seated reservoir fluids in the Jiamuhe Formation (Fm.) of the Xinguang Gas Field exhibit low densities of 0.77 to 0.83 g/cm3, high gas-to-oil ratios (GORs) of 1014.41 to 13,054.77 m3/m3, high methane contents of 91.16% to 92.74%, and retrograde condensation characteristics. Additionally, the reservoir temperature and pressure exceed the critical point and the saturation pressure at reservoir temperature, indicating a supercritical condensate gas phase. The present condensate gas in the Xinguang Gas Field is a mixed hydrocarbon from two charging events. Initially, during the Middle–Late Triassic period, both Block 1 and the Xinguang Gas Field were charged with mature oil. Later, from the Late Cretaceous to Early Neogene periods, a secondary charging of highly mature oil and gas occurred in the Xinguang Gas Field, while the reservoir in Block 1 remained largely unchanged. In the co-evolution of reservoir fluid composition, temperature, and pressure, the phase transitions of the hydrocarbon fluids in the Xinguang Gas Field passed through several stages, including liquid black oil (231.9–80.3 Ma), liquid volatile oil (80.3–79.1 Ma), vapor–liquid two-phase volatile oil (79.1–78.3 Ma), vapor–liquid two-phase condensate gas (78.3–69.1 Ma), and supercritical condensate gas (69.1 Ma–present). Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 5703 KB  
Article
Controlling Factors of Productivity in the Fuyu Oil Reservoir of the Lower Cretaceous Songliao Basin, Northeast China
by Wenjie Li, Zhengkai Liao, Peng Lai, Jijun Tian and Shitao Du
Processes 2025, 13(8), 2623; https://doi.org/10.3390/pr13082623 - 19 Aug 2025
Viewed by 387
Abstract
The Mindong–Changchunling region is situated in the central portion of the Songliao Basin, Northeast China. The primary target stratum in this area is the Fuyu Oil Layer of the Lower Cretaceous Quantou 4 Member. This reservoir is predominantly composed of fine sandstone and [...] Read more.
The Mindong–Changchunling region is situated in the central portion of the Songliao Basin, Northeast China. The primary target stratum in this area is the Fuyu Oil Layer of the Lower Cretaceous Quantou 4 Member. This reservoir is predominantly composed of fine sandstone and siltstone, with minor interbedded medium sandstone. Variations in provenance, sedimentation, and diagenesis are identified as the main controlling factors for the distribution of high-quality reservoirs in the Mindong–Changchunling region. The sand body distribution in the Changchunling area is influenced by the eastern near-source provenance. The reservoir properties of these sand bodies are impacted by the poor sorting and high mud content typical of near-source delta sand bodies. Nonetheless, reservoir quality is enhanced by late-stage uplift and surface water dissolution-leaching. In contrast, sand body distribution in the Mindong area is governed by the southwestern far-source provenance. Far-source delta sand bodies are characterized by better sorting but high mud content, with their reservoir properties primarily impaired by carbonate cementation. During the early-middle diagenetic stage, feldspar dissolution by organic acids improves sand body reservoir quality. Due to variations in sedimentation and diagenesis, the following three favorable reservoir zones with distinct genetic types have developed in the Mindong–Changchunling area: the Chang107–Chang104–Chang52 well block, the Fu155–Fu161–Fu157 well block, and the Min103–Min31 well block. Full article
Show Figures

Figure 1

16 pages, 8282 KB  
Article
Petrographic, Geochemical, and Geochronological Characteristics of the Granite in Yunnan and Its Constraints on Ion-Adsorption Rare Earth Element Mineralization
by Bin Zhang, Haobin Niu, Linkui Zhang, Binhui Zhang, Xiangping Zhu, Rudong Gao, Yongfei Yang and Yinggui Zou
Minerals 2025, 15(8), 872; https://doi.org/10.3390/min15080872 - 19 Aug 2025
Viewed by 531
Abstract
The TuguanZhai rare earth deposit in Tengchong, along with the Longan and Yingpanshan deposits in Longchuan, is a significant ion-adsorption type rare earth (iREE) deposit in Yunnan, China. Previous studies mainly focused on the geochemistry of residual regolith or the migration and enrichment [...] Read more.
The TuguanZhai rare earth deposit in Tengchong, along with the Longan and Yingpanshan deposits in Longchuan, is a significant ion-adsorption type rare earth (iREE) deposit in Yunnan, China. Previous studies mainly focused on the geochemistry of residual regolith or the migration and enrichment mechanism of rare earth elements (REEs), but lacked systematic analysis of the protoliths. To constrain this deposit and its protolith rock, called Tuguanzhai granite, we systematically integrate petrology features, petrogeochemistry, zircon U-Pb date, and artificial heavy mineral separation (AHMS). Specifically, iREE-host granites include two main periods in this area: the Early Cretaceous (112.13 ± 0.75 Ma) and the Paleocene–Eocene (52.78 ± 0.28 Ma, 48.56 ± 0.19 Ma). The former includes three types of biotite monzogranite with different grain sizes, and the latter is mainly medium-grained biotite monzogranite with local mylonitization. Geochemical features show that these granites generally share high alkalinity compositions (w(K2O + Na2O): 7.15 to 12.75 wt%) and potassium contents (w(K2O): 3.89 to 8.36 wt%). The mineralized granites exhibit significantly higher concentrations of the total REEs than non-mineralized granites, along with a strong enrichment of light REEs. Moreover, the results of AHMS reveal that the REE contents of apatite, allanite, and titanite in mineralized granites are 4.98, 1.29, and 1.90 times more abundant than in non-mineralized granites, respectively. Due to REEs being released from these REE-rich minerals in humid environments, there exists significant potential for iREE formation and exploration in the Early Cretaceous granites in western Yunnan. We innovatively propose the “abundance of easily leachable minerals” as a key indicator for iREE mineralization and exploration, having found it to be better than the traditional total REE contents. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

21 pages, 62661 KB  
Article
Petrography, Fluid Inclusions and Isotopic Analysis of Ordovician Carbonate Reservoirs in the Central Ordos Basin, NW China
by Xiaoli Wu, Ping Wang, Haijian Jiang, Hexin Huang, Tong Chen, Lei Chen, Dongxing Wang and Junnian Chen
Minerals 2025, 15(8), 860; https://doi.org/10.3390/min15080860 - 15 Aug 2025
Viewed by 533
Abstract
Deep carbonate reservoirs have garnered significant attention and demonstrated great potential for oil and gas exploration in recent years. The Majiagou Formation in the Ordos Basin has received much attention for its deep oil and gas deposits recently. However, the issue of fluid [...] Read more.
Deep carbonate reservoirs have garnered significant attention and demonstrated great potential for oil and gas exploration in recent years. The Majiagou Formation in the Ordos Basin has received much attention for its deep oil and gas deposits recently. However, the issue of fluid evolution within the great depth has been overlooked, and the relationship between fluid flow and the gas accumulation process remains unclear. This paper aims to explore the fluid evolution and its relationship with the gas accumulation, which poses a challenge for further petroleum exploration. To achieve this, petrological studies on dolomite samples were carried out and four types of secondary cements were identified: early gypsum-moldic pore-filling calcite, late gypsum-moldic pore-filling calcite, dissolution pore-filling calcite and fracture-filling calcite. Subsequently, an interdisciplinary approach that integrates petrography observation, microthermometry, laser Raman analysis of fluid inclusions, and carbon and oxygen isotope tests on these types of cements is employed to elucidate the fluid flow evolution. These investigations revealed that four different stages of inorganic fluid activity were coeval with two stages of organic fluid activity. The two stages of organic fluid flows were significantly important for petroleum accumulation. In the late Triassic to early Jurassic, there was small-scale liquid oil accumulation, which was associated with the second stage of fluids. In the early Cretaceous, there was large-scale gas accumulation, which was associated with the fourth stage of fluids. This research is crucial for understanding the fluid flow process and its relationship with hydrocarbon accumulation in deeply buried carbonate formations. Full article
(This article belongs to the Special Issue Natural and Induced Diagenesis in Clastic Rock)
Show Figures

Graphical abstract

38 pages, 13807 KB  
Article
A Sediment Provenance Study of Middle Jurassic to Cretaceous Strata in the Eastern Sverdrup Basin: Implications for the Exhumation of the Northeastern Canadian-Greenlandic Shield
by Michael A. Pointon, Helen Smyth, Jenny E. Omma, Andrew C. Morton, Simon Schneider, Stephen J. Rippington, Berta Lopez-Mir, Quentin G. Crowley, Dirk Frei and Michael J. Flowerdew
Geosciences 2025, 15(8), 313; https://doi.org/10.3390/geosciences15080313 - 12 Aug 2025
Viewed by 1207
Abstract
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study [...] Read more.
The Sverdrup Basin, Arctic Canada, is ideally situated to contain an archive of tectono-magmatic and climatic events that occurred within the wider Arctic region, including the exhumation of the adjacent (northeastern) part of the Canadian-Greenlandic Shield. To test this, a multi-analytical provenance study of Middle Jurassic to Cretaceous sandstones from the eastern Sverdrup Basin was undertaken. Most of the samples analysed were recycled from sedimentary rocks of the Franklinian Basin, with possible additional contributions from the Mesoproterozoic Bylot basins and metasedimentary shield rocks. The amount of high-grade metamorphic detritus in samples from central Ellesmere Island increased from Middle Jurassic times. This is interpreted to reflect exhumation of the area to the southeast/east of the Sverdrup Basin. Exhumation may have its origins in Middle Jurassic extension and uplift along the northwest Sverdrup Basin margin. Rift-flank uplift along the Canadian–West Greenland conjugate margin and lithospheric doming linked with the proximity of the Iceland hotspot and/or the emplacement of the Cretaceous High Arctic Large Igneous Province may have contributed to exhumation subsequently. The southeast-to-northwest thickening of Jurassic to Early Cretaceous strata across the Sverdrup Basin may be a distal effect of exhumation rather than rifting in the Sverdrup or Amerasia basins. Full article
Show Figures

Figure 1

22 pages, 3233 KB  
Review
Palms (Arecaceae) and Meligethinae (Coleoptera, Nitidulidae): A Long Evolutionary Journey
by Meike Liu, Jinting Che, Simone Sabatelli, Pietro Gardini, Simone Fattorini, Andrzej Lasoń, Josef Jelínek and Paolo Audisio
Plants 2025, 14(16), 2487; https://doi.org/10.3390/plants14162487 - 11 Aug 2025
Viewed by 731
Abstract
Arecaceae (palms) constitute a highly diversified family of monocots, distributed especially in tropical and subtropical areas, including approximately 2600 species and 180 genera. Palms originated by the end of the Early Cretaceous, with most genus-level cladogenetic events occurring from the Eocene and Oligocene [...] Read more.
Arecaceae (palms) constitute a highly diversified family of monocots, distributed especially in tropical and subtropical areas, including approximately 2600 species and 180 genera. Palms originated by the end of the Early Cretaceous, with most genus-level cladogenetic events occurring from the Eocene and Oligocene onward. Meligethinae (pollen beetles) are a large subfamily of Nitidulidae (Coleoptera), including just under 700 described species, and some 50 genera. Meligethinae are widespread in the Palearctic, Afrotropical, and Oriental Regions. All meligethine species are associated with flowers or inflorescences of several plant families, both dicots (the great majority) and monocots (around 7%); approximately 80% of known species are thought to be monophagous or strictly oligophagous at the larval stage. The origin of Meligethinae is debated, although combined paleontological, paleogeographical, and molecular evidence suggests placing it somewhere in the Paleotropics around the Eocene–Oligocene boundary, ca. 35–40 Mya. This article reviews the insect–host plant relationships of all known genera and species of Meligethinae associated with Arecaceae, currently including some 40 species and just under ten genera (including a possibly new African one). The role of adults as effective and important pollinators of their host palms (also in terms of provided ecosystem services) has been demonstrated in some common palm species. All Meligethinae living on palms show rather close phylogenetic relationships with one another and with the mainly Eastern Palearctic genus Meligethes Stephens, 1830 and related genera (associated with dicots of the families Rosaceae, Brassicaceae, or Cleomaceae). Molecular data suggests that the palm-associated Paleotropical genus Meligethinus Grouvelle, 1906 constitutes the sister-group of Meligethes and allied genera. Some hypotheses are presented on the evolution of Meligethinae associated with palms and their probably rather recent (early Miocene–Pleistocene) radiation on their host plants. Meligethinae likely radiated on palms long after the diversification of their hosts, and their recent evolution was driven by repeated radiation on pre-existing and diverse palm taxa, rather than ancient host associations and coevolution. Finally, this article also briefly summarized the relationships that other unrelated groups of Nitidulidae have established with palms around the world. Full article
(This article belongs to the Special Issue Interaction Between Flowers and Pollinators)
Show Figures

Figure 1

19 pages, 3872 KB  
Article
Sr-Nd-Hf Isotopic Characteristics of Ore-Bearing Intrusive Rocks in the Chating Cu-Au Deposit and Magushan Cu-Mo Deposit of Nanling-Xuancheng Ore Concentration Area and Their Geological Significance
by Linsen Jin, Xiaochun Xu, Xinyue Xu, Ruyu Bai, Zhongyang Fu, Qiaoqin Xie and Zhaohui Song
Minerals 2025, 15(8), 837; https://doi.org/10.3390/min15080837 - 7 Aug 2025
Viewed by 464
Abstract
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at [...] Read more.
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at present due to a lack of in-depth studies on the petrogenesis of ore-bearing intrusive rocks and their relationship with deposits. Here, the ore-bearing intrusive rocks of the two deposits are investigated through analyses of whole-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages, and zircon Hf isotopes. The results reflect the two intrusions, both formed in the Early Cretaceous (138.9 ± 0.8 Ma and 132.2 ± 1.3 Ma). They belong to the sub-alkaline high-K calc-alkaline series, while trace elements are enriched in LILEs and LREE and depleted in HFSEs. However, the intrusions of the Chating deposit (Isr = 0.7064–0.7068; εNd(t) = −8.5–−7.3; εHf(t) = −11.9–−7.0) have obviously different Sr-Nd-Hf isotopic compositions from the intrusions of the Magushan deposit (Isr = 0.7079–0.7081; εNd(t) = −5.7–−5.4; εHf(t) = −5.4–−3.6). The characteristics indicate that the two intrusions were formed in the same diagenetic ages and tectonic settings and derived from a crust–mantle mixture with predominant mantle-derived materials. But the crust materials of sources are different, which further leads to different metallogenic elements, showing that the Chating deposit is enriched in Cu and Au, while the Magushan deposit is enriched in Mo. Moreover, the characteristics and magma sources of two intrusions and metallogenic elements correspond respectively to the Tongling Cu-Au polymetallic ore concentration area in the MLYB and the southern Anhui Mo polymetallic ore concentration area in the Jiangnan orogen. The correlation implies differences in magmatism and mineralization between the northwestern and southeastern parts of the Nanling-Xuancheng ore concentration area, demarcated by the Jiangnan Deep Fault. These variations were mainly controlled by the Pre-Sinian crustal basement. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 3303 KB  
Article
Brachiopod Diversity and Paleoenvironmental Changes in the Paleogene: Comparing the Available Long-Term Patterns
by Dmitry A. Ruban
Diversity 2025, 17(8), 505; https://doi.org/10.3390/d17080505 - 23 Jul 2025
Viewed by 461
Abstract
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and [...] Read more.
Recent updates to the reconstructions of Cenozoic environmental changes (global sea level, temperature, and atmospheric carbon dioxide content) have made it intriguing to compare them to paleontological records for original interpretations. Paleogene brachiopods have remained in the shadow of their Paleozoic–Mesozoic predecessors, and the reactions of their diversity to the Earth’s dramatic changes are poorly understood. The present work aims to fill this gap via a comparison of several diversity and paleoenvironmental curves. The generic diversity was established by stages with two essentially different paleontological datasets, and several fresh paleoenvironmental reconstructions were adopted. It was observed that neither Paleogene eustatic fluctuations nor changes in the atmospheric carbon dioxide content correspond well to the generic diversity dynamics of brachiopods. The changes in the total number of genera and the global temperatures demonstrate similarity at the Danian–Ypresian interval, but not later. The fluctuations in the brachiopod diversity are near the same level during the Eocene–Oligocene, despite strong paleoenvironmental changes, implying the intrinsic resistivity of these organisms to external influences. Additionally, the Cretaceous/Paleogene mass extinction, the Paleocene–Eocene thermal maximum, and the Early Eocene optimum could enhance the diversity dynamics together with the long-term temperature changes. In contrast, the influences of the Late Danian warming event and the Oi-1 glaciation were not observed. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

16 pages, 9441 KB  
Article
Tectonic Characteristics and Geological Significance of the Yeba Volcanic Arc in the Southern Lhasa Terrane
by Zhengzhe Fan, Zhengren Yuan, Minghui Chen and Genhou Wang
Appl. Sci. 2025, 15(15), 8145; https://doi.org/10.3390/app15158145 - 22 Jul 2025
Viewed by 477
Abstract
The Southern Lhasa Terrane, as the southernmost tectonic unit of the Eurasian continent, has long been a focal area in global geoscientific research due to its complex evolutionary history. The Yeba Formation exposed in this terrane comprises an Early–Middle Jurassic volcanic–sedimentary sequence that [...] Read more.
The Southern Lhasa Terrane, as the southernmost tectonic unit of the Eurasian continent, has long been a focal area in global geoscientific research due to its complex evolutionary history. The Yeba Formation exposed in this terrane comprises an Early–Middle Jurassic volcanic–sedimentary sequence that records multiphase tectonic deformation. This study applies structural analysis to identify three distinct phases of tectonic deformation in the Yeba Formation of the Southern Lhasa Terrane. The D1 deformation is characterized by brittle–ductile shearing, as evidenced by the development of E-W-trending regional shear foliation (S1). S1 planes dip northward at angles of 27–87°, accompanied by steeply plunging stretching lineations (85–105°). Both south- and north-directed shear-rotated porphyroclasts are observed in the hanging wall. 40Ar-39Ar dating results suggest that the D1 deformation occurred at ~79 Ma and may represent an extrusion-related structure formed under a back-arc compressional regime induced by the low-angle subduction of the Neo-Tethys Ocean plate. The D2 deformation is marked by the folding of the pre-existing shear foliation (S1), generating an axial planar cleavage (S2). S2 planes dip north or south with angles of 40–70° and fold hinges plunge westward or NWW. Based on regional tectonic evolution, it is inferred that the deformation may have resulted from sustained north–south compressional stress during the Late Cretaceous (79–70 Ma), which caused the overall upward extrusion of the southern Gangdese back-arc basin, leading to upper crustal shortening and thickening and subsequently initiating folding. The D3 deformation is dominated by E-W-striking ductile shear zones. The regional shear foliation (S3) exhibits a preferred orientation of 347°∠75°. Outcrop-scale ductile deformation indicators reveal a top-to-the-NW shear sense. Combined with regional tectonic evolution, the third-phase (D3) deformation is interpreted as a combined product of the transition from compression to lateral extension within the Lhasa terrane, associated with the activation of the Gangdese Central Thrust (GCT) and the uplift of the Gangdese batholith since ~25 Ma. Full article
Show Figures

Figure 1

Back to TopTop