Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = East Asia-Pacific pattern

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4267 KiB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Viewed by 597
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

18 pages, 15284 KiB  
Article
Interannual Variations in Winter Precipitation in Northern East Asia
by Yuchi Zhang, Tianjiao Ma, Yuehua Li and Wen Chen
Water 2025, 17(2), 219; https://doi.org/10.3390/w17020219 - 15 Jan 2025
Viewed by 477
Abstract
Winter precipitation (P) in East Asia (EA) is characterized by a wetter south and a drier north. Most of the existing research has concentrated on elucidating the mechanisms of winter P in southern EA, with relatively less attention given to northern East Asia [...] Read more.
Winter precipitation (P) in East Asia (EA) is characterized by a wetter south and a drier north. Most of the existing research has concentrated on elucidating the mechanisms of winter P in southern EA, with relatively less attention given to northern East Asia (NEA). Our analysis showed that the correlation coefficient (c.c.) of average winter precipitation anomaly percentage (PAP) between southern EA and NEA is 0.24 for the period 1950–2023, indicating substantial regional difference. An empirical orthogonal function (EOF) analysis was conducted on the winter PAP in NEA. The first and second mode (EOF1 and EOF2) account for 45.5% and 17.9% of the total variance, respectively. EOF1 is characterized by a region-wide uniform spatial pattern whereas EOF2 exhibits a north–south dipole pattern. Further analysis indicated that the two EOF modes are related to distinct atmospheric circulation and external forcings. Specifically, EOF1 is linked to a wave train from Central Siberia toward Japan, while EOF2 is connected with an anomaly similar to the Western Pacific pattern. Variations in mid–high latitude sea surface temperatures, sea ice, and snow are potential factors influencing EOF1. EOF2 exhibits a close relationship with tropical SST anomalies. Full article
Show Figures

Figure 1

19 pages, 3801 KiB  
Article
Cold Front Identification Using the DETR Model with Satellite Cloud Imagery
by Yujing Qin, Qian Liu and Chuhan Lu
Remote Sens. 2025, 17(1), 36; https://doi.org/10.3390/rs17010036 - 26 Dec 2024
Viewed by 633
Abstract
The cloud system characteristics within satellite cloud imagery play a crucial role in the meteorological operational analysis of cold fronts, and integrating satellite cloud imagery into automated frontal identification schemes can provide valuable insights for accurately determining the position and morphology of cold [...] Read more.
The cloud system characteristics within satellite cloud imagery play a crucial role in the meteorological operational analysis of cold fronts, and integrating satellite cloud imagery into automated frontal identification schemes can provide valuable insights for accurately determining the position and morphology of cold fronts. This study introduces Cloud-DETR, a deep learning identification method that uses the DETR model with satellite cloud imagery, to identify cold fronts from extensive datasets. In the Cloud-DETR method, preprocessed satellite cloud imagery is used to generate training images, which are then put into the DETR model for cold front identification, achieving excellent results. The alignment between the Cloud-DETR cold fronts and weather systems during continuous periods and extreme weather events is assessed. The Cloud-DETR method exhibits high accuracy in both the position and morphology of cold fronts, ensuring stable identification performance. The high matching rate between the Cloud-DETR cold fronts and the manually identified ones in the test set, image dataset and labels from 2017 is verified. This indicates that the Cloud-DETR method can provide an accurate cold fronts dataset. The cold fronts dataset from 2005 to 2023 was obtained using the Cloud-DETR method. It was found that over the past 18 years, the frequency of cold fronts displays distinct seasonal patterns, with the highest occurrences observed during winter, particularly along the mid-latitude storm tracks extending from the east coast of East Asia to the Northwest Pacific. The methodology and findings presented in this study could help advance further research on the characteristics of cold front cloud systems based on long-term datasets. Full article
Show Figures

Figure 1

42 pages, 10640 KiB  
Article
A Model of Southern Sikhote-Alin Liverwort Flora and a New Approach to Analyze the Altitudinal Distribution Patterns in the Zov Tigra National Park (South of the Russian Far East, Temperate Pacific Asia)
by Ksenia G. Klimova, Vadim A. Bakalin, Daniil A. Bakalin and Seung Se Choi
Diversity 2024, 16(12), 752; https://doi.org/10.3390/d16120752 - 8 Dec 2024
Viewed by 836
Abstract
The liverwort flora in Zov Tigra National Park in southern Sikhote-Alin (Primorye Territory, south of the Russian Far East), which has one of the richest regional floras, was studied to assess its taxonomic diversity, and analyzed using a new approach to determine altitudinal [...] Read more.
The liverwort flora in Zov Tigra National Park in southern Sikhote-Alin (Primorye Territory, south of the Russian Far East), which has one of the richest regional floras, was studied to assess its taxonomic diversity, and analyzed using a new approach to determine altitudinal distribution patterns. This new approach is based on probabilistic models of the altitudinal distribution of individual taxa proposed for identifying altitudinal groups of species. This method can be used to analyze patterns of the distribution of species of various taxonomic groups in cases where a sufficiently representative dataset is available and may be especially relevant in regions where altitudinal zonation is not obvious or changes in the altitudinal fractions of the dominant vegetation are too continuous. The proposed method revealed three altitudinal groups that were more clearly differentiated than groups of taxa based on altitudinal vegetation belts. Based on the obtained results, the most important bioclimatic indices correlated with the altitudinal distribution of liverworts were identified: annual mean temperature (BIO1), annual precipitation (BIO12), isothermality (BIO3), and factors associated with the temperature and amount of precipitation during the warmest period of the year, including the maximum temperature of the warmest month (BIO5), the mean temperature of the wettest quarter (BIO8), the mean temperature of the warmest quarter (BIO10), precipitation during the wettest month (BIO13), precipitation during the wettest quarter (BIO16), and precipitation during the warmest quarter (BIO18). This study reports 130 species, 1 variety, and 1 subspecies. Pseudolophozia debiliformis and Scapania praetervisa are newly recorded for Sikhote-Alin and the Primorye Territory. Diplophyllum albicans and Cephaloziella rubella are newly reported for the Primorye Territory. The national park liverwort flora can be classified as boreal–temperate circumpolar–East Asian. Given the high taxonomic diversity and coverage of all altitudinal zones represented in the region, the liverwort flora in Zov Tigra National Park can serve as a model for all liverwort floras in southern Sikhote-Alin. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

19 pages, 3422 KiB  
Article
The Influence of Heritage on the Revealed Comparative Advantage of Tourism—A Worldwide Analysis from 2011 to 2022
by Zsuzsanna Bacsi
Heritage 2024, 7(9), 5232-5250; https://doi.org/10.3390/heritage7090246 - 18 Sep 2024
Viewed by 1206
Abstract
A country’s development is crucially determined by its cultural and natural heritage, and it is reflected in its industrial structure and its success in the global marketplace. The present paper looks at the global performance of tourism, comparing its performance measured by the [...] Read more.
A country’s development is crucially determined by its cultural and natural heritage, and it is reflected in its industrial structure and its success in the global marketplace. The present paper looks at the global performance of tourism, comparing its performance measured by the Normalised Revealed Comparative Advantage (NRCA) index to the components of natural and cultural heritage, analysing 117 countries of the world. Natural and cultural heritage indicators were derived from the tourism competitiveness reports of the World Economic Forum for the years 2011–2013–2015–2017–2019–2022. Panel regression analysis was applied, with NRCA as the dependent variable and eight indicators of natural and cultural heritage as independent variables, comparing regions of the world. The main findings show considerably differing patterns between regions; Europe and Eurasia being similar to the Americas, with decreasing competitive advantage associated with more focus on endangered species and observance of environmental treaties, while the Middle East and North Africa show a strongly opposite pattern. Cultural heritage has a positive impact only in Sub-Saharan Africa, while Asia and the Pacific benefit mainly from the increase of protected areas and abundance of species. These differences shed light on differences in tourism competitiveness in the global market and may guide policymakers towards utilising heritage items for improving tourism performance. Full article
(This article belongs to the Special Issue Heritage Tourism and Sustainable City Dynamics)
Show Figures

Figure 1

11 pages, 2064 KiB  
Article
Annotation and Characterization of the Zacco platypus Genome
by Sang-Eun Nam, Dae-Yeul Bae and Jae-Sung Rhee
Diversity 2024, 16(9), 529; https://doi.org/10.3390/d16090529 - 1 Sep 2024
Viewed by 936
Abstract
The pale chub Zacco platypus (Cypriniformes; Xenocyprididae; Jordan & Evermann, 1902) is widely distributed across freshwater ecosystems in East Asia and has been recognized as a potential model fish species for ecotoxicology and environmental monitoring. Here, a high-quality de novo genome assembly of [...] Read more.
The pale chub Zacco platypus (Cypriniformes; Xenocyprididae; Jordan & Evermann, 1902) is widely distributed across freshwater ecosystems in East Asia and has been recognized as a potential model fish species for ecotoxicology and environmental monitoring. Here, a high-quality de novo genome assembly of Z. platypus was constructed through the integration of a combination of long-read Pacific Bioscience (PacBio) sequencing, short-read Illumina sequencing, and Hi-C sequencing technologies. Z. platypus has the smallest genome size compared to other species belonging to the order Cypriniformes. The assembled genome encompasses 41.45% repeat sequences. As shown in other fish, a positive correlation was observed between genome size and the composition of transposable elements (TE) in the genome. Among TEs, a relatively higher rate of DNA transposon was observed, which is a common pattern in the members of the order Cypriniformes. Functional annotation was processed using four representative databases, identifying a core set of 12,907 genes shared among them. Orthologous gene family analysis revealed that Z. platypus has experienced more gene family contraction rather than expansion compared to other Cypriniformes species. Among the uniquely expanded gene families in Z. platypus, detoxification and stress-related gene families were identified, suggesting that this species could represent a promising model for ecotoxicology and environmental monitoring. Taken together, the Z. platypus genome assembly will provide valuable data for omics-based health assessments in aquatic ecosystems, offering further insights into the environmental and ecological facets within this species. Full article
(This article belongs to the Special Issue Genome Sequence and Analysis for Animal Ecology and Evolution)
Show Figures

Figure 1

15 pages, 7765 KiB  
Article
Impact of May–June Antarctic Oscillation on July–August Heat-Drought Weather in Yangtze River Basin
by Zhengxuan Yuan, Jun Zhang, Liangmin Du, Ying Xiao and Sijing Huang
Atmosphere 2024, 15(8), 998; https://doi.org/10.3390/atmos15080998 - 20 Aug 2024
Viewed by 930
Abstract
Investigating the physical mechanism behind the formation of summer heat-drought weather (HDW) in the Yangtze River Basin (YRB) holds significant importance for predicting summer precipitation and temperature patterns in the region as well as disaster mitigation and prevention. This study focuses on spatiotemporal [...] Read more.
Investigating the physical mechanism behind the formation of summer heat-drought weather (HDW) in the Yangtze River Basin (YRB) holds significant importance for predicting summer precipitation and temperature patterns in the region as well as disaster mitigation and prevention. This study focuses on spatiotemporal patterns of July–August (JA) HDW in the YRB from 1979 to 2022, which is linked partially to the preceding May–June (MJ) Antarctic Oscillation (AAO). Key findings are summarized as follows: (1) The MJ AAO displays a marked positive correlation with the JA HDW index (HDWI) in the southern part of upper YRB (UYRB), while showing a negative correlation in the area extending from the Han River to the western lower reaches of the YRB (LYRB); (2) The signal of MJ AAO persists into late JA through a specific pattern of Sea Surface Temperature anomalies in the Southern Ocean (SOSST). This, in turn, modulates the atmospheric circulation over East Asia; (3) The SST anomalies in the South Atlantic initiate Rossby waves that cross the equator, splitting into two branches. One branch propagates from the Somali-Tropical Indian Ocean, maintaining a negative-phased East Asia–Pacific (EAP) teleconnection pattern. This enhances the moisture flow from the Pacific towards the middle and lower reaches of the Yangtze River Basin (MYRB-LYRB). The other branch propagates northward, crossing the Somali region, and induces a positive geopotential height anomaly over Urals-West Asia. This reduces the southwesterlies towards the UYRB, thereby contributing to HDW variabilities in the region. (4) Partial Least Squares Regression (PLSR) demonstrated predictive capability for JA HDW in the YRB for 2022, based on Southern Ocean SST. Full article
Show Figures

Figure 1

14 pages, 3809 KiB  
Article
Variations in the Thermal Low-Pressure Location Index over the Qinghai–Tibet Plateau and Its Relationship with Summer Precipitation in China
by Qingxia Xie, Mingfei Zhou, Yulei Zhu, Hongzhong Tang, Dongpo He, Jing Yang and Qingbing Pang
Atmosphere 2024, 15(8), 931; https://doi.org/10.3390/atmos15080931 - 4 Aug 2024
Viewed by 1043
Abstract
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes [...] Read more.
The thermal and dynamic effects of the special topography of the Qinghai–Tibet Plateau have a significant impact on rainfall in China. Utilizing NCEP/NCAR monthly reanalysis data alongside precipitation observations from 1936 monitoring stations across China spanning from 1966 to 2022, this study establishes a location index for the thermal low-pressure center situated over the Qinghai–Tibet Plateau. Temporal variations in the location index and summer (July) precipitation patterns in China were studied. Over the past six decades, thermal low-pressure centers have been predominantly positioned near 90° E and 32.5° N within a geopotential height of 4360 gpm, with their distribution extending from east to west rather than from south to north. The longitudinal and latitudinal position indices showed the same linear trend, with a negative trend before the 21st century, and then began to turn positive. Mutation analysis highlights pronounced weakening mutations occurring in 1981 and 1973, with the longitudinal index transitioning from an interannual cycle of approximately 6–8 years, while the latitudinal index displays quasi-cyclic oscillations of 5 and 8 and 12–14 years. Strong negative correlations are evident between the location indices and precipitation along the southeastern edge of the Qinghai–Tibet Plateau and in southern China, contrasting with the positive correlations observed in the central-eastern plateau, northwest, north, and the Huang-Huai region of China. The center of the thermal low is located to the east and north, corresponding to the deeper surface thermal low in most areas east of China, and the stronger transport of warm and wet air from the southwest wind, leading to greater convergence of southwest wind and northwest wind in China’s northern region. The south of the Yangtze River is controlled by the strengthening West Pacific subtropical high and South Asia high, resulting in a significant decrease in precipitation, and the warm and humid air from the southwest on the west side of the West Pacific subtropical high is also transported to the north, increasing the precipitation in most parts of the north. Full article
(This article belongs to the Special Issue The Impact of Climate Change on Water Resources)
Show Figures

Figure 1

15 pages, 5782 KiB  
Article
Pacific Decadal Oscillation Modulation on the Relationship between Moderate El Niño-Southern Oscillation and East Asian Winter Temperature
by Jingwen Ge, Xiaojing Jia and Hao Ma
Atmosphere 2024, 15(2), 228; https://doi.org/10.3390/atmos15020228 - 14 Feb 2024
Cited by 2 | Viewed by 4866
Abstract
Based on observation data from 1958 to 2020, the current study explores the interdecadal modulation effects on moderate El Niño-Southern Oscillation (ENSO) episodes and East Asian (EA) winter surface air temperature (SAT) through the Pacific Decadal Oscillation (PDO). Strong and moderate ENSO episodes [...] Read more.
Based on observation data from 1958 to 2020, the current study explores the interdecadal modulation effects on moderate El Niño-Southern Oscillation (ENSO) episodes and East Asian (EA) winter surface air temperature (SAT) through the Pacific Decadal Oscillation (PDO). Strong and moderate ENSO episodes are classified by their amplitudes. The current work investigates the influence of moderate ENSO episodes on the EA winter SAT, especially moderate La Niña episodes, which show a close relationship with the EA winter SAT. To explore the PDO modulation effect on the influence of ENSO episodes, these ENSO episodes are further divided into two categories in terms of warm or cold PDO phases. The composite results show that in the warm phase of the PDO, the moderate La Niña signal is relatively strong and stable, with a profound impact on the EA winter SAT variability, whereas in the cold PDO phase, the relationship between the EA winter SAT and moderate La Niña episodes becomes ambiguous. Further studies show that the PDO modulates the moderate La Niña impacts on EA winter SAT primarily through varying the East Asian winter monsoon (EAWM). While moderate La Niña episodes take place in a warm PDO phase, positive and negative anomalies of sea level pressure (SLP) are observed in the Eurasian continent and mid–high-latitude North Pacific, respectively, favoring anomalous northerlies along the eastern coast of East Asia and therefore a colder-than-normal EA winter. In contrast, in a moderate La Niña winter during the cold PDO phase, the mid–high-latitude North Pacific is controlled by an anomalous high-pressure system with southerly anomalies along its western flank, and therefore, a weak warm pattern is observed for the EA winter SAT. Full article
Show Figures

Figure 1

16 pages, 31820 KiB  
Article
Persistent Meteorological Drought in the Yangtze River Basin during Summer–Autumn 2022: Relay Effects of Different Atmospheric Internal Variabilities
by Ruili Wang, Xiao Li, Hedi Ma, Xing Li, Junchao Wang and Anwei Lai
Atmosphere 2023, 14(9), 1402; https://doi.org/10.3390/atmos14091402 - 5 Sep 2023
Cited by 5 | Viewed by 1716
Abstract
During the summer–autumn (July–October, Jul–Oct) period of 2022, the Yangtze River Basin (YRB) of China experienced an extreme meteorological drought, with Jul–Oct containing the lowest precipitation in the YRB since 1979. The possible causes of this drought were analyzed in the present study. [...] Read more.
During the summer–autumn (July–October, Jul–Oct) period of 2022, the Yangtze River Basin (YRB) of China experienced an extreme meteorological drought, with Jul–Oct containing the lowest precipitation in the YRB since 1979. The possible causes of this drought were analyzed in the present study. Surprisingly, unlike many previous drought events, we found that this event was not characterized by a consistent atmospheric circulation anomaly regime throughout the entire drought period. Instead, two distinct circulation patterns were responsible for the precipitation deficit in two different stages, i.e., July–August (Jul–Aug) and September–October (Sep–Oct). In Jul–Aug, the YRB precipitation deficit primarily resulted from an intensified and northward-shifted East Asian subtropical jet, which allowed for an extremely northwestward shift of western Pacific subtropical highs, leading to an anomalous descending motion. Such circulation patterns in Jul–Aug originated from the dispersion of Rossby waves upstream from central Asia and Europe. Meanwhile, in Sep–Oct, the YRB drought was primarily attributed to a low-level cyclonic anomaly over the western North Pacific, which was closely associated with frequent tropical cyclones traveling across this region. Observational analysis and a model ensemble hindcast suggest that atmospheric internal variabilities dominated the drought process, while the SSTA, particularly the La Niña event, played a limited role. Therefore, this long-lasting extreme YRB meteorological drought was largely driven by the relay effects of different atmospheric internal variabilities in Jul–Aug and Sep–Oct, respectively, which shows limited model predictability and poses a great challenge for operational climate predictions. Full article
(This article belongs to the Special Issue The Water Cycle and Climate Change (2nd Edition))
Show Figures

Figure 1

12 pages, 276 KiB  
Article
In Vitro Activity of Ceftaroline and Comparators against Bacterial Isolates Collected Globally from Patients with Skin and Soft Tissue Infections: ATLAS Program 2019–2020
by Alona Kuraieva, Guillermo Cabezas-Camarero, Pattarachai Kiratisin and Eric Utt
Antibiotics 2023, 12(8), 1237; https://doi.org/10.3390/antibiotics12081237 - 26 Jul 2023
Cited by 1 | Viewed by 2001
Abstract
The objective of this study was to assess the in vitro activity of ceftaroline and a panel of comparator agents against isolates causing skin and soft tissue infections (SSTIs) collected in Africa/Middle East, Asia–Pacific, Europe, and Latin America from 2019–2020. Minimum inhibitory concentrations [...] Read more.
The objective of this study was to assess the in vitro activity of ceftaroline and a panel of comparator agents against isolates causing skin and soft tissue infections (SSTIs) collected in Africa/Middle East, Asia–Pacific, Europe, and Latin America from 2019–2020. Minimum inhibitory concentrations (MIC) were determined using European Committee on Antimicrobial Susceptibility Testing criteria. All the methicillin-susceptible Staphylococcus aureus (MSSA) isolates were susceptible to ceftaroline. Across all regions, ceftaroline demonstrated potent activity against methicillin-resistant S. aureus (MRSA, susceptibility 89.5–93.7%) isolates. Susceptibility to vancomycin, daptomycin, linezolid, teicoplanin, trimethoprim sulfamethoxazole, and tigecycline was ≥94.1% in MSSA and MRSA isolates. Against β-hemolytic streptococci isolates, ceftaroline demonstrated very potent activity (MIC90 0.008–0.03 mg/L) across all regions. All β-hemolytic streptococci isolates were susceptible to linezolid, penicillin, and vancomycin (MIC90 0.06–2 mg/L). Among the extended-spectrum β-lactamases (ESBL)-negative Enterobacterales tested (E. coli, K. pneumoniae, and K. oxytoca), susceptibility to ceftaroline was high (88.2–98.6%) in all regions. All ESBL-negative Enterobacterales were susceptible to aztreonam. Potent activity was observed for amikacin, cefepime, and meropenem (94.1–100%) against these isolates. Overall, ceftaroline showed potent in vitro activity against isolates of pathogens causing SSTIs. Continuous surveillance of global and regional susceptibility patterns is needed to guide appropriate treatment options against these pathogens. Full article
15 pages, 11885 KiB  
Article
Regional Characteristics of Summer Precipitation Anomalies in the Northeastern Maritime Continent
by Qi Xu, Zhaoyong Guan, Dachao Jin, Wei Chen and Jing Zhu
Atmosphere 2023, 14(7), 1059; https://doi.org/10.3390/atmos14071059 - 22 Jun 2023
Cited by 1 | Viewed by 1351
Abstract
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the [...] Read more.
Based on the monthly mean reanalysis data from NCEP/NCAR (National Centers for Environmental Prediction/ National Center for Atmospheric Research) and GPCP (Global Precipitation Climatology Project) (1979–2020), the regional characteristics of precipitation in the warm pool side of the Maritime Continent (MC) and the relationships between different precipitation patterns and atmospheric circulations are studied. The results show that there are significant correlations as well as differences between the precipitation in the east of the Philippines (area A) and that in the Pacific Ocean near the Northern Mariana Islands (area B). Precipitation in area A is closely related to the eastern Pacific ENSO (El Nino-Southern Oscillation) and EAP/PJ (East Asia-Pacific/Pacific-Japan) teleconnection pattern, while precipitation in area B is linked to the Indian Ocean basin-wide and the South China Sea summer monsoon. When the precipitation anomaly in area A is positive, the East Asian summer monsoon is weak. A cyclone appears to the northwest of area A at 850 hPa with convergence airflow. After filtering out the effects of precipitation in area B, the cyclone retreats to the west, and an anticyclone appears to the southeast of area A. When the precipitation is above normal in area B, the circulation and water vapor transportation are similar to that in area A but more to the east. The updraft and downdrafts to both north and south sides of area B form two closed meridional vertical circulations. When the influence of area A is moved out, the circulation center in the warm pool area moves eastward. This research contributes to a better understanding of the regional characteristics of the Maritime Continent and the East Asian summer monsoon. Full article
Show Figures

Figure 1

16 pages, 13265 KiB  
Article
The Global Spread Pattern of Rat Lungworm Based on Mitochondrial Genetics
by Xia Tian, Shen Chen, Lei Duan, Yingjun Qian, Hongmei Li and Shan Lv
Pathogens 2023, 12(6), 788; https://doi.org/10.3390/pathogens12060788 - 31 May 2023
Cited by 8 | Viewed by 2278
Abstract
Eosinophilic meningitis due to rat lungworm, Angiostrongylus cantonensis, is a global public health concern. Human cases and outbreaks have occurred in the new endemic areas, including South America and Spain. The growing genetic data of A. cantonensis provides a unique opportunity to [...] Read more.
Eosinophilic meningitis due to rat lungworm, Angiostrongylus cantonensis, is a global public health concern. Human cases and outbreaks have occurred in the new endemic areas, including South America and Spain. The growing genetic data of A. cantonensis provides a unique opportunity to explore the global spread pattern of the parasite. Eight more mitochondrial (mt) genomes were sequenced by the present study. The phylogeny of A. cantonensis by Bayesian inference showed six clades (I–VI) determined by network analysis. A total of 554 mt genomes or fragments, which represented 1472 specimens of rat lungworms globally, were used in the present study. We characterized the gene types by mapping a variety of mt gene fragments to the known complete mt genomes. Six more clades (I2, II2, III2, V2, VII and VIII) were determined by network analysis in the phylogenies of cox1 and cytb genes. The global distribution of gene types was visualized. It was found that the haplotype diversity of A. cantonensis in Southeast and East Asia was significantly higher than that in other regions. The majority (78/81) of samples beyond Southeast and East Asia belongs to Clade II. The new world showed a higher diversity of Clade II in contrast with the Pacific. We speculate that rat lungworm was introduced from Southeast Asia rather than the Pacific. Therefore, systematic research should be conducted on rat lungworm at a global level in order to reveal the scenarios of spread. Full article
(This article belongs to the Special Issue Rat Lungworm Disease)
Show Figures

Figure 1

17 pages, 3548 KiB  
Review
The Guiding Role of Rossby Wave Energy Dispersion Theory for Studying East Asian Monsoon System Dynamics
by Ronghui Huang, Jingliang Huangfu, Yong Liu and Riyu Lu
Atmosphere 2023, 14(6), 962; https://doi.org/10.3390/atmos14060962 - 31 May 2023
Cited by 3 | Viewed by 1899
Abstract
This paper is written to commemorate the 10th anniversary of academician Ye Duzheng (Yeh T.C.) pass away and his great contributions to the development of atmospheric dynamics. Under the inspiration and guidance of the theory of Rossby wave energy dispersion, remarkable progresses have [...] Read more.
This paper is written to commemorate the 10th anniversary of academician Ye Duzheng (Yeh T.C.) pass away and his great contributions to the development of atmospheric dynamics. Under the inspiration and guidance of the theory of Rossby wave energy dispersion, remarkable progresses have been made in research on planetary wave dynamics and teleconnections of atmospheric circulation anomalies. This paper aims to make a brief review of the studies on the propagating characteristics of quasi-stationary planetary waves in a three-dimensional spherical atmosphere and the dynamic processes of the interannual and interdecadal variabilities of the East Asian summer and winter monsoon systems. Especially, this paper systematically reviews the progresses of the studies on the impacts of the interannual and interdecadal variabilities of the East Asia/Pacific (EAP) pattern teleconnection wave train propagating along the meridional direction over East Asia and the “Silk Road” pattern teleconnection wave train propagating along the zonal direction within the subtropical jet from West Asia to East Asia on the East Asian summer monsoon system and the summer precipitation variability in China, under the guidance of the theory of Rossby wave energy dispersion. Moreover, this paper reviews the dynamic processes of the impact of the interannual and interdecadal oscillations of the propagating waveguides of boreal quasi-stationary planetary waves on the variability of the East Asian winter monsoon system. Full article
Show Figures

Figure 1

16 pages, 5346 KiB  
Article
Interdecadal Variation in Rossby Wave Source over the Tibetan Plateau and Its Impact on the East Asia Circulation Pattern during Boreal Summer
by Yihui Ding, Xiaoting Sun, Qingquan Li and Yafang Song
Atmosphere 2023, 14(3), 541; https://doi.org/10.3390/atmos14030541 - 11 Mar 2023
Cited by 4 | Viewed by 3381
Abstract
The wave activity flux representing the energy propagation direction of planetary Rossby wave generally originates from a large wave source area. This study investigates the interdecadal variability and formation mechanism of Rossby wave source over the Tibetan Plateau (TP-RWS) and its impact on [...] Read more.
The wave activity flux representing the energy propagation direction of planetary Rossby wave generally originates from a large wave source area. This study investigates the interdecadal variability and formation mechanism of Rossby wave source over the Tibetan Plateau (TP-RWS) and its impact on the atmospheric circulation and precipitation pattern in East Asia based on the ERA-20C reanalysis dataset in summer (June–July–August) during 1900 to 2010. Results show that the region with the maximum variabilities of Rossby wave source (RWS) in the past 110 years appears over the Tibetan Plateau (TP) during boreal summer, and the TP-RWS shows prominent characteristics of interdecadal oscillation. Secondly, the TP-RWS is mainly composed of the vortex stretching term (RWS-S1) and the absolute vorticity advection term (RWS-S2). The interdecadal TP-RWS is a synergistic result of the snow cover over northwestern TP associated with the RWS-S1, and the deep convection over southeastern TP associated with the RWS-S2. Furthermore, the interdecadal TP-RWS can lead to an alternatively positive and negative pattern of geopotential height anomalies from the northwestern TP to the North Pacific, which has a great climate effect on the precipitation in Huang-huai River Basin, South Korea and Japan Island. Under the guidance of the anomalous cyclonic circulation in East Asia, the prevailing southerly and easterly winds occur over the West Pacific and the Huang-huai River Basin, which lead to the water vapor convergence and upward movement at middle and lower troposphere. Full article
Show Figures

Figure 1

Back to TopTop