Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (184)

Search Parameters:
Keywords = Eastern Sichuan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3186 KB  
Article
Human Settlements Suitability Based on Natural Characteristics of the Qinghai–Tibet Plateau
by Wenjun Li, Xiao Shi, Yu Tian and Feifei Fan
Land 2025, 14(11), 2260; https://doi.org/10.3390/land14112260 - 14 Nov 2025
Abstract
Human settlements’ suitability in ecologically fragile regions is critical for sustainable development and ecological security. However, comprehensive assessments that integrate multiple natural environmental factors are insufficient. Here, we establish a human settlements suitability index (HSI) to assess human settlements’ suitability on the Qinghai–Tibet [...] Read more.
Human settlements’ suitability in ecologically fragile regions is critical for sustainable development and ecological security. However, comprehensive assessments that integrate multiple natural environmental factors are insufficient. Here, we establish a human settlements suitability index (HSI) to assess human settlements’ suitability on the Qinghai–Tibet Plateau, including Relief Degree of Land Surface (RDLS), Temperature–Humidity Index (THI), Land Surface Water Abundance Index (LSWAI), and Land Cover Index (LCI). The results show that: (1) The RDLS of the Qinghai–Tibet Plateau was generally high, reflecting elevated terrain and steep topography, with strong regional variation. THI increases from the northwest arid region to the southeast, while high LSWAI and LCI were concentrated and show a zonal distribution. (2) The HSI ranged from 0.07 to 1, with seven suitability types. Low-suitability was distributed in the Kunlun, Gangdise, Himalayas, and the northern and southern parts of the Tibetan valleys. Mid-suitability appeared in the Sichuan–Tibet Alpine Canyon, while high-suitability was concentrated in the northeast (Qaidam Basin, Qilian, Hengduan Mountains), the west (Menyu), and the Qaidam Basin. (3) Low-suitability covered over 70% of the Qinghai–Tibet Plateau but hosts only 20% of the population. Mid-suitability occupied about 20% of the land, yet contained nearly 70% of the population. High-suitability (HSI > 0.7) areas were limited but concentrated populations in the Qaidam Basin, southern Tibetan valleys, and eastern Sichuan–Tibet Alpine Valleys. Future development should target these high-suitability regions to support sustainable population growth and reduce land pressure. These findings provide a scientific basis for regional planning, population distribution, and ecological security on the Qinghai–Tibet Plateau. Full article
Show Figures

Figure 1

25 pages, 5060 KB  
Article
A Comparative Analysis of CG Lightning Activities in the Hengduan Mountains and Its Surrounding Areas
by Jingyue Zhao, Yinping Liu, Yuhui Jiang, Yongbo Tan, Zheng Shi, Yang Zhao and Junjian Liu
Remote Sens. 2025, 17(21), 3574; https://doi.org/10.3390/rs17213574 - 29 Oct 2025
Viewed by 481
Abstract
Based on five years of data (2017–2021) from the China National Lightning Detection Network (CNLDN), this study compares and analyzes the temporal and spatial distribution characteristics of cloud-to-ground (CG) lightning activities in the Hengduan Mountain region and its surroundings. It explores the relationship [...] Read more.
Based on five years of data (2017–2021) from the China National Lightning Detection Network (CNLDN), this study compares and analyzes the temporal and spatial distribution characteristics of cloud-to-ground (CG) lightning activities in the Hengduan Mountain region and its surroundings. It explores the relationship between CG lightning occurrences and altitude, topography, and various meteorological elements. Our findings reveal a stark east–west divide: high lightning density in the Sichuan Basin and the central Yungui Plateau contrasts sharply with lower densities over the eastern Tibetan Plateau and Hengduan Mountains. This geographical dichotomy extends to the diurnal cycle, where positive cloud-to-ground (PCG) lightning activities are more prevalent in the western part of the study area, while significant nocturnal activity defines the eastern basin and plateau. The study also finds that the relationship between CG lightning activities in the four sub-regions and 2 m temperature, precipitation, convective available potential energy, and Bowen ratio (the ratio of sensible heat flux to latent heat flux) exhibits similarities. Furthermore, we show that the relationship between lightning frequency and altitude is highly region-specific, with each area displaying a unique signature reflecting its underlying topography: a normal distribution over the eastern Tibetan Plateau, a bimodal pattern in the Hengduan Mountains, a sharp low-altitude peak in the Sichuan Basin, and a complex trimodal structure on the Yungui Plateau. These distinct regional patterns highlight the intricate interplay between large-scale circulation, complex terrain, and local meteorology in modulating lightning activity. Full article
Show Figures

Graphical abstract

21 pages, 8836 KB  
Article
Strain-Softening-Based Elliptical Wellbore Model for Horizontal In-Situ Stress Prediction and Wellbore Stability Analysis in the Wujiaping Formation of Kaijiang-Liangping Block, Eastern Sichuan Basin, Sichuan Province
by Xinrui Yang, Qiang Wang, Ji Xu, Meng Li, Kanhua Su, Qian Li, Liangjun Xu, Qiang Pu, Guanghui Shi, Wen Tang, Chen Jing, Bo Xu and Qifeng Qin
Processes 2025, 13(10), 3326; https://doi.org/10.3390/pr13103326 - 17 Oct 2025
Viewed by 313
Abstract
Marine shale is highly prone to wellbore collapse due to its high pore pressure, propensity for hydration and swelling, distinct bedding planes, and low tensile strength. Horizontal in situ stress serves as a critical parameter for wellbore stability analysis; however, its accurate prediction [...] Read more.
Marine shale is highly prone to wellbore collapse due to its high pore pressure, propensity for hydration and swelling, distinct bedding planes, and low tensile strength. Horizontal in situ stress serves as a critical parameter for wellbore stability analysis; however, its accurate prediction is extremely challenging in complex geological environments. Conventional studies often simplify the wellbore as a circular shape, neglecting its natural elliptical deformation under non-uniform in situ stress, which leads to reduced predictive accuracy. To address this limitation, this study establishes an elliptical wellbore model that incorporates the strain-softening characteristics of shale. Theoretical models for stress distribution in both elastic and plastic zones were derived. The strain-softening behavior was validated through triaxial compression tests, providing a foundation for analytical solutions of stress distributions around circular and elliptical wellbores. Furthermore, an elliptical wellbore-based model was developed to derive a new prediction equation for horizontal in situ stress. Numerical programming was employed to compute stress distributions, and finite element simulations under various aspect ratios corroborated the theoretical results, showing excellent agreement. Results demonstrate that the elliptical wellbore model captures the near-wellbore stress state more accurately. As the aspect ratio increases, the extreme values of radial and tangential stresses increase significantly, with pronounced stress concentrations observed around the 180° and 360° positions. Predictions of horizontal in situ stress based on the proposed model achieved over 89% accuracy when verified against field data, confirming its reliability. This study overcomes the limitations inherent in the traditional circular wellbore assumption, providing a more precise analytical method for wellbore stability assessment in Marine shale under complex geological conditions. The findings offer a valuable theoretical basis for wellbore stability management and drilling engineering design. Full article
(This article belongs to the Special Issue Development of Advanced Drilling Engineering)
Show Figures

Figure 1

22 pages, 6860 KB  
Article
Comparative Analysis of Summer Deep Convection Systems over the Tibetan Plateau and Sichuan Basin
by Xin Yan, Quanliang Chen, Yang Li and Yujing Liao
Atmosphere 2025, 16(10), 1134; https://doi.org/10.3390/atmos16101134 - 27 Sep 2025
Viewed by 495
Abstract
Based on GPM satellite observations during June to September from 2014 to 2023, deep convective systems (DCSs) over the Tibetan Plateau and Sichuan Basin exhibited distinct spatiotemporal and structural characteristics. Over the Plateau, DCSs were primarily concentrated in the central and eastern regions, [...] Read more.
Based on GPM satellite observations during June to September from 2014 to 2023, deep convective systems (DCSs) over the Tibetan Plateau and Sichuan Basin exhibited distinct spatiotemporal and structural characteristics. Over the Plateau, DCSs were primarily concentrated in the central and eastern regions, with echo-top heights typically ranging from 15 to 17 km and 40 dBZ echo tops mostly found between 6 and 8 km. In contrast, the Basin displayed a more spatially uniform distribution of convection, characterized by lower echo-top heights (12–14 km) and higher 40 dBZ echo tops. Although both regions experienced a seasonal peak in DCS frequency in July, their diurnal variations differed significantly. The Plateau exhibited a pronounced unimodal peak between 13:00 and 16:00, which was driven by strong surface heating. In the Basin, a bimodal pattern was observed, with elevated frequencies during 23:00–02:00 and 08:00–11:00. This pattern was likely influenced by local thermodynamic and topographic conditions. The altitude of maximum corrected radar reflectivity (MaxCRF) was predominantly between 4 and 7 km over the Plateau and confined to 2–4 km over the Basin. Over the Plateau, DCS frequency increased significantly with elevation, consistent with the enhancing role of high terrain, whereas no comparable relationship was found in the Basin. Instead, convective activity in the Basin appeared to be modulated primarily by atmospheric instability and moisture availability, highlighting the contrasting environmental controls between the two regions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 7345 KB  
Article
Increased Exposure Risk of Natural Reserves to Rainstorm in the Eastern Monsoon Region of China
by Yixuan Zhou, Hanming Cao, Lin Zhao and Shao Sun
Atmosphere 2025, 16(9), 1096; https://doi.org/10.3390/atmos16091096 - 18 Sep 2025
Viewed by 415
Abstract
Due to climate warming, extreme precipitation events have intensified in frequency and intensity. This trend has raised significant concerns about its impact on natural reserves in eastern China’s monsoon region. A risk assessment is, therefore, needed to evaluate the vulnerability of these protected [...] Read more.
Due to climate warming, extreme precipitation events have intensified in frequency and intensity. This trend has raised significant concerns about its impact on natural reserves in eastern China’s monsoon region. A risk assessment is, therefore, needed to evaluate the vulnerability of these protected areas. Based on observed and simulated daily precipitation data, this study analyzed the spatiotemporal trends of heavy rainfall in the eastern monsoon region of China and assessed the exposure risk of the protected areas to rainstorm events both in the historical and future periods. Results indicate that the annual average number of heavy rainfall days gradually increases from northwest to southeast, displaying a distinct zonal distribution pattern. The proportion of heavy rainfall days to total precipitation days and the average intensity of heavy rainfall show peak centers in the southeastern coastal areas, western Sichuan region, and North China Plain, with minimum values observed in the northwestern direction. Protected areas in China’s Eastern Monsoon Region display a north–south gradient of precipitation exposure risk that intensifies from historical (1995–2014) to near future (2031–2050) to far future (2081–2100) under SSP245 scenario, with highest vulnerability in southeastern coastal areas. National reserves generally experience lower exposure than provincial and municipal ones, though all categories face increasing precipitation risks over time. Full article
Show Figures

Figure 1

16 pages, 3364 KB  
Article
Impact of Earthquake on Rainfall Thresholds for Sustainable Geo-Hazard Warnings: A Case Study of Luding Earthquake
by Qun Zhang, Junfeng Li, Shengjie Jin, Yanhui Liu, Shikang Liu, Zhuo Wang, Lei Zhang and Zeyi Song
Sustainability 2025, 17(18), 8127; https://doi.org/10.3390/su17188127 - 9 Sep 2025
Viewed by 679
Abstract
This study explores the impact of the 2022 Mw 6.8 Luding Earthquake on various geo-hazards and their corresponding rainfall thresholds. Focusing on the seismic intensity VI zone in Sichuan Province, China, we analyzed 1979 geo-hazard records and hourly precipitation data from 475 stations [...] Read more.
This study explores the impact of the 2022 Mw 6.8 Luding Earthquake on various geo-hazards and their corresponding rainfall thresholds. Focusing on the seismic intensity VI zone in Sichuan Province, China, we analyzed 1979 geo-hazard records and hourly precipitation data from 475 stations between 2010 and 2024. Empirical ID (intensity–duration) and AC (accumulated rainfall–continuous rainfall duration) rainfall threshold models are established based on these datasets. By comparing pre- and post-earthquake data, this study assesses changes in the spatial distribution and triggering rainfall thresholds of landslides, rockfalls, and debris flows. The results indicate a significant increase in geo-hazard risks post-earthquake, particularly near the Xianshuihe Fault, with rockfall risks exhibiting the most pronounced rise. Statistical analysis reveals that the rainfall thresholds required to trigger geo-hazards decreased notably after the earthquake: ID models indicate a decrease of approximately 20%, while AC models show a reduction of about 20% in the western zone and 10% in the eastern zone. A four-level early warning system is developed using empirical rainfall threshold models, offering tailored hazard alerts for different regions and geo-hazard types. The variation in threshold values between the east and west zones highlights the influence of differing topographic and climatic conditions. These findings provide critical insights for post-seismic hazard assessment and inform more effective, sustainable early warnings, thereby supporting more reliable and sustainable disaster risk management in earthquake-affected regions. Full article
Show Figures

Figure 1

22 pages, 21687 KB  
Article
Spatial Heterogeneity of Traditional Villages in Southern Sichuan, China: Insights from GWR and K-Means Clustering
by Huakang Guo, Youhai Tang and Jingwen Guo
Land 2025, 14(9), 1817; https://doi.org/10.3390/land14091817 - 6 Sep 2025
Cited by 1 | Viewed by 609
Abstract
Understanding the spatial heterogeneity and driving mechanisms of traditional villages is critical for their tailored preservation and revitalization. Existing studies often overlook intra-regional variations shaped by historical and cultural contexts. In addition, the lack of systematic quantitative approaches limits the formulation of effective [...] Read more.
Understanding the spatial heterogeneity and driving mechanisms of traditional villages is critical for their tailored preservation and revitalization. Existing studies often overlook intra-regional variations shaped by historical and cultural contexts. In addition, the lack of systematic quantitative approaches limits the formulation of effective conservation strategies. This study addresses these gaps by examining 71 nationally listed traditional villages across five prefectures in southern Sichuan, China. We first mapped spatial patterns using ArcGIS10.5 and Geodetector. Then we applied GWR (adjusted R2 = 0.70), K-means clustering, and Kruskal–Wallis tests to examine the spatial heterogeneity. This workflow resulted in three different village clusters related to historical migration: S1-Indigenous (n = 14)—Villages established before the Ming Dynasty, primarily inhabited by indigenous Sichuan residents. S2-Huguang migrants (n = 30)—Villages formed during the late Ming to early Qing “Huguang Migration to Sichuan,” facilitated by proximity to rivers and transport routes. S3-Refugees (n = 27)—Villages settled by war refugees from northern and eastern Sichuan, often located in secure, high-elevation areas. Based on these findings, we propose tailored conservation strategies: preserving historical layout and architectural integrity in S1; maintaining migration-shaped forms and highlighting cultural imprints in S2; and balancing spatial conservation with improved mountain road accessibility in S3. Full article
Show Figures

Figure 1

29 pages, 10109 KB  
Article
Optimizing Ethnic Regional Development: A Coupled Economic–Social–Environmental Framework for Sustainable Spatial Planning
by Siyao Du, Qi Tian, Jialong Zhong and Jie Yang
Appl. Sci. 2025, 15(17), 9606; https://doi.org/10.3390/app15179606 - 31 Aug 2025
Cited by 1 | Viewed by 600
Abstract
This study employs a systems theory approach to investigate the coupling coordination and driving mechanisms within the economic–social–environmental (ESE) system in China’s ethnic regions. It analyzes 67 ethnic counties in Sichuan Province, using an integrated framework that combines dynamic Shannon entropy, coupling coordination [...] Read more.
This study employs a systems theory approach to investigate the coupling coordination and driving mechanisms within the economic–social–environmental (ESE) system in China’s ethnic regions. It analyzes 67 ethnic counties in Sichuan Province, using an integrated framework that combines dynamic Shannon entropy, coupling coordination modeling, and GeoDetector. Based on data from 2005 to 2024, the study reveals the spatiotemporal patterns of ESE coupling coordination. The key findings are as follows: (1) The coupling coordination degree has gone through four stages: moderate imbalance → mild imbalance → primary coordination → moderate coordination. By 2024, 81.8% of counties had achieved coordinated development, and “highly coordinated” counties emerged for the first time. (2) The Western Sichuan Plateau has formed a high–high agglomeration zone by monetizing ecological assets and utilizing ethnic cultural resources. In contrast, the hilly and parallel ridge–valley regions in central and eastern Sichuan remain in low–low agglomerations due to their dependency on traditional industrialization paths. The decrease in high–low and low–high outliers indicates the recent policy polarization effects. (3) The interaction between habitat quality and per capita GDP has the strongest explanatory power. The rising marginal contributions of energy and carbon emission intensity suggest that green industrialization is crucial to breaking the “poverty–pollution” trap. Full article
Show Figures

Figure 1

14 pages, 2659 KB  
Article
Evaluation of Marine Shale Gas Reservoir in Wufeng–Longmaxi Formation, Jiaoshiba Area, Eastern Sichuan Basin
by Qiang Yan, Aiwei Zheng, Li Liu, Jin Wang, Xiaohong Zhan and Zhiheng Shu
Energies 2025, 18(16), 4350; https://doi.org/10.3390/en18164350 - 15 Aug 2025
Viewed by 493
Abstract
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability [...] Read more.
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability analysis, gas content analysis, and organic geochemistry to systematically analyze the influencing factors of reservoir properties and gas content in the studied interval. Combined with the variation law of TOC and other parameters with depth, the target reservoir is comprehensively evaluated, and the evaluation results are verified based on actual production data. The results show that the influence of minerals on permeability is very weak, and cracks can greatly improve permeability, but their contribution to porosity is not significant. Porosity has a certain impact on gas content, but it is not the main controlling factor. The pores related to quartz (organic silicon) are mostly organic pores, which host a large amount of shale gas, while clay minerals are not conducive to the occurrence of shale gas. Organic matter (OM) maturity contributes more to porosity than OM abundance, but OM abundance has a stronger impact on gas content than its maturity. The research intervals can be divided into four categories: Class I (①–③) is the best, followed by Class II (⑦–⑨); Class III (④–⑥) is poor, and Class IV (top, non-gas-bearing layer) is the worst. Full article
Show Figures

Figure 1

16 pages, 4272 KB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 - 1 Aug 2025
Viewed by 740
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

21 pages, 9917 KB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Cited by 1 | Viewed by 616
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

22 pages, 6857 KB  
Article
Spatio-Temporal Coupling and Forecasting of Construction Industry High-Quality Development and Human Settlements Environmental Suitability in Southern China: Evidence from 15 Provincial Panel Data
by Keliang Chen, Bo Chen and Wanqing Chen
Buildings 2025, 15(14), 2425; https://doi.org/10.3390/buildings15142425 - 10 Jul 2025
Viewed by 445
Abstract
High-quality growth of the construction industry and an improved human settlements environment are essential to sustainable urbanization. Existing studies have paid limited systematic attention to the spatial and temporal dynamics of the coordinated development between the construction industry and human settlements, as well [...] Read more.
High-quality growth of the construction industry and an improved human settlements environment are essential to sustainable urbanization. Existing studies have paid limited systematic attention to the spatial and temporal dynamics of the coordinated development between the construction industry and human settlements, as well as the underlying factors driving regional disparities. This gap restricts the formulation of precise, differentiated sustainable policies tailored to regions at different development stages and with varying resource endowments. Southern China, characterized by pronounced spatial heterogeneity and unique development trends, offers a natural laboratory for examining the spatio-temporal interaction between these two dimensions. Using panel data for 15 southern provinces (2013–2022), we applied the entropy method, coupling coordination model, Dagum Gini coefficient, spatial trend surface analysis, gravity model, and grey forecasting to evaluate current conditions and predict future trends. The main findings are as follows. (1) The coupling coordination degree rose steadily, forming a stepped spatial pattern from the southwest through the center to the southeast. (2) The coupling coordination degree appears obvious polarization effect, presenting a spatial linkage pattern with Jiangsu-Shanghai-Zhejiang, Hubei-Hunan-Jiangxi, and Sichuan-Chongqing as the core of the three major clusters. (3) The overall Dagum Gini coefficient declined, but intra-regional disparities persisted: values were highest in the southeast, moderate in the center, and lowest in the southwest; inter-regional differences dominated the total inequality. (4) Forecasts for 2023–2027 suggest further improvement in the coupling coordination degree, yet spatial divergence will widen, creating a configuration of “eastern leadership, central catch-up acceleration, and differentiated southwestern development.” This study provides an evidence base for policies that foster high-quality construction sector growth and enhance the living environment. The findings of this study indicate that policymaking should prioritize promoting synergistic regional development, enhancing the radiating and driving role of core regions, and establishing a multi-level coordinated governance mechanism to bridge regional disparities and foster more balanced and sustainable development. Full article
Show Figures

Figure 1

12 pages, 4432 KB  
Article
Intelligent Parameter Fusion for Distributed Flood Modeling in Parallel Ridge–Valley Landscapes
by Lan Lan, Bingxing Tong, Hongwei Bi, Yinshan Xu and Li Zhang
Water 2025, 17(13), 1984; https://doi.org/10.3390/w17131984 - 1 Jul 2025
Viewed by 527
Abstract
The pronounced spatial heterogeneity of underlying surface characteristics within the parallel ridge–valley system of eastern Sichuan necessitated hydrological discretization of the watershed into nested subdomains comprising inter-ridge valley units and secondary slope cells. A distributed flood simulation framework specifically adapted to parallel ridge–valley [...] Read more.
The pronounced spatial heterogeneity of underlying surface characteristics within the parallel ridge–valley system of eastern Sichuan necessitated hydrological discretization of the watershed into nested subdomains comprising inter-ridge valley units and secondary slope cells. A distributed flood simulation framework specifically adapted to parallel ridge–valley topography was developed, coupled with a sequential intelligent parameter optimization algorithm. Model validation was conducted through the simulation of ninety flood events (2015–2023) in the Lishui watershed, a representative parallel ridge–valley basin. For parameter-calibrated sub-watersheds, mean relative errors of 13.8% (peak discharge) and 12.3% (runoff depth) were achieved, while non-calibrated watersheds exhibited marginally higher inaccuracies at 14.6% and 15.1%, respectively. Spatial parameter estimation was effectively implemented through the assimilation of limited hydrometeorological station data. The integrated modeling framework, incorporating terrain-adaptive parameterization and intelligent calibration protocols, demonstrated high-fidelity flood process simulation capabilities in complex parallel ridge–valley landscapes. Full article
Show Figures

Figure 1

30 pages, 16359 KB  
Article
Simultaneous Reductions in Forest Resilience and Greening Trends in Southwest China
by Huiying Wu, Tianxiang Cui and Lin Cao
Remote Sens. 2025, 17(13), 2227; https://doi.org/10.3390/rs17132227 - 29 Jun 2025
Viewed by 1113
Abstract
As an essential part of terrestrial ecosystems, forests are key to sustaining ecological balance, supporting the carbon cycle, and offering various ecosystem services. In recent years, forests in Southwest China have experienced notable greening. However, the rising occurrence and severity of droughts present [...] Read more.
As an essential part of terrestrial ecosystems, forests are key to sustaining ecological balance, supporting the carbon cycle, and offering various ecosystem services. In recent years, forests in Southwest China have experienced notable greening. However, the rising occurrence and severity of droughts present a significant threat to the stability of forest ecosystems in this region. This study adopted the near-infrared reflectance of vegetation (NIRv) and the lag-1 autocorrelation of NIRv as indicators to assess the dynamics and resilience of forests in Southwest China. We identified a progressive decline in forest resilience since 2008 despite a dominant greening trend in Southwest China’s forests during the last 20 years. By developing the eXtreme Gradient Boosting (XGBoost) model and Shapley additive explanation framework (SHAP), we classified forests in Southwest China into coniferous and broadleaf types to evaluate the driving factors influencing changes in forest resilience and mapped the spatial distribution of dominant drivers. The results showed that the resilience of coniferous forests was mainly driven by variations in elevation and land surface temperature (LST), with mean absolute SHAP values of 0.045 and 0.038, respectively. In contrast, the resilience of broadleaf forests was primarily influenced by changes in photosynthetically active radiation (PAR) and soil moisture (SM), with mean absolute SHAP values of 0.032 and 0.028, respectively. Regions where elevation and LST were identified as dominant drivers were mainly distributed in coniferous forest areas across central, eastern, and northern Yunnan Province as well as western Sichuan Province, accounting for 32.9% and 20.0% of the coniferous forest area, respectively. Meanwhile, areas where PAR and SM were dominant drivers were mainly located in broadleaf forest regions in Sichuan and eastern Guizhou, accounting for 29.9% and 27.7% of the broadleaf forest area, respectively. Our study revealed that the forest greening does not necessarily accompany an enhancement in resilience in Southwest China, identifying the driving factors behind the decline in forest resilience and highlighting the necessity of differentiated restoration strategies for forest ecosystems in this region. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

18 pages, 4709 KB  
Article
Spatial Layout Optimization of Rural Tourism Destinations in Mountainous Areas Based on Gap Analysis Method: A Case Study in Southwest China
by Tashi Lobsang, Min Zhao, Yi Zeng, Jun Zhang, Zulin Liu and Peng Li
Land 2025, 14(7), 1357; https://doi.org/10.3390/land14071357 - 26 Jun 2025
Viewed by 788
Abstract
Rural tourism plays a crucial role in promoting industrial revitalization in mountainous regions. Drawing inspiration from the site selection mechanisms of nature reserves, this study constructs a gap analysis framework tailored to rural tourism destinations, aiming to provide technical support for their spatial [...] Read more.
Rural tourism plays a crucial role in promoting industrial revitalization in mountainous regions. Drawing inspiration from the site selection mechanisms of nature reserves, this study constructs a gap analysis framework tailored to rural tourism destinations, aiming to provide technical support for their spatial layout and systematic planning. By integrating a potential evaluation system based on tourism resources, market demand, and synergistic factors, the study identifies rural tourism priority zones and proposes a development typology and spatial optimization strategy across five provinces in Southwest China. The findings reveal: (1) First- and second-priority zones are primarily located in the core and periphery of provincial capitals and prefecture-level cities, while third-priority zones are concentrated in resource-rich areas of Yunnan and Guizhou and market-oriented areas of Sichuan, Chongqing, and Guangxi. (2) The Chengdu Plain emerges as the core region for rural tourism development, with hotspots clustered around Chengdu, northern and western Guizhou, central Chongqing, eastern Guangxi, and northwestern Yunnan, whereas cold spots are mainly situated in the western Sichuan Plateau and the Leshan–Liangshan–Zhaotong–Panzhihua–Chuxiong–Pu’er belt. (3) The alignment between tourism resources and rural tourism destinations is highest in Yunnan and Guizhou, while Chongqing exhibits the strongest match between destinations and tourism market potential and synergistic development conditions. Overall, 79.35% of rural tourism destinations in the region are situated within identified priority zones, with Chongqing, Guizhou, and Sichuan exhibiting the highest proportions. Based on the spatial mismatch between potential and existing destinations, the study delineates four development types—maintenance and enhancement, supplementation and upgrading, expansion, and reserve development—and offers regionally tailored planning recommendations. The proposed framework provides a replicable approach for spatial planning of rural tourism destinations in complex mountainous settings. Full article
Show Figures

Figure 1

Back to TopTop