Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Einstein–Hopf model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1067 KB  
Article
Scalar QED Model for Polarizable Particles in Thermal Equilibrium or in Hyperbolic Motion in Vacuum
by Kanu Sinha and Peter W. Milonni
Physics 2024, 6(1), 356-367; https://doi.org/10.3390/physics6010023 - 5 Mar 2024
Viewed by 1623
Abstract
We consider a scalar QED (quantum electrodynamics) model for the frictional force and the momentum fluctuations of a polarizable particle in thermal equilibrium with radiation or in hyperbolic motion in a vacuum. In the former case the loss of particle kinetic energy due [...] Read more.
We consider a scalar QED (quantum electrodynamics) model for the frictional force and the momentum fluctuations of a polarizable particle in thermal equilibrium with radiation or in hyperbolic motion in a vacuum. In the former case the loss of particle kinetic energy due to the frictional force is compensated by the increase in kinetic energy associated with the momentum diffusion, resulting in the Planck distribution when it is assumed that the average kinetic energy satisfies the equipartition theorem. For hyperbolic motion in vacuum the frictional force and the momentum diffusion are similarly consistent with an equilibrium with a Planckian distribution at the temperature T=a/2πkBc. The quantum fluctuations of the momentum imply that it is only the average acceleration a that is constant when the particle is subject to a constant applied force. Full article
Show Figures

Figure 1

Back to TopTop