Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (201)

Search Parameters:
Keywords = Ethereum blockchain technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 599 KB  
Review
A Review on Blockchain Sharding for Improving Scalability
by Mahran Morsidi, Sharul Tajuddin, S. H. Shah Newaz, Ravi Kumar Patchmuthu and Gyu Myoung Lee
Future Internet 2025, 17(10), 481; https://doi.org/10.3390/fi17100481 - 21 Oct 2025
Viewed by 577
Abstract
Blockchain technology, originally designed as a secure and immutable ledger, has expanded its applications across various domains. However, its scalability remains a fundamental bottleneck, limiting throughput, specifically Transactions Per Second (TPS) and increasing confirmation latency. Among the many proposed solutions, sharding has emerged [...] Read more.
Blockchain technology, originally designed as a secure and immutable ledger, has expanded its applications across various domains. However, its scalability remains a fundamental bottleneck, limiting throughput, specifically Transactions Per Second (TPS) and increasing confirmation latency. Among the many proposed solutions, sharding has emerged as a promising Layer 1 approach by partitioning blockchain networks into smaller, parallelized components, significantly enhancing processing efficiency while maintaining decentralization and security. In this paper, we have conducted a systematic literature review, resulting in a comprehensive review of sharding. We provide a detailed comparative analysis of various sharding approaches and emerging AI-assisted sharding approaches, assessing their effectiveness in improving TPS and reducing latency. Notably, our review is the first to incorporate and examine the standardization efforts of the ITU-T and ETSI, with a particular focus on activities related to blockchain sharding. Integrating these standardization activities allows us to bridge the gap between academic research and practical standardization in blockchain sharding, thereby enhancing the relevance and applicability of our review. Additionally, we highlight the existing research gaps, discuss critical challenges such as security risks and inter-shard communication inefficiencies, and provide insightful future research directions. Our work serves as a foundational reference for researchers and practitioners aiming to optimize blockchain scalability through sharding, contributing to the development of more efficient, secure, and high-performance decentralized networks. Our comparative synthesis further highlights that while Bitcoin and Ethereum remain limited to 7–15 TPS with long confirmation delays, sharding-based systems such as Elastico and OmniLedger have reported significant throughput improvements, demonstrating sharding’s clear advantage over traditional Layer 1 enhancements. In contrast to other state-of-the-art scalability techniques such as block size modification, consensus optimization, and DAG-based architectures, sharding consistently achieves higher transaction throughput and lower latency, indicating its position as one of the most effective Layer 1 solutions for improving blockchain scalability. Full article
(This article belongs to the Special Issue AI and Blockchain: Synergies, Challenges, and Innovations)
Show Figures

Figure 1

34 pages, 5206 KB  
Article
Enhancing Transparency and Trust in Higher Education Institutions via Blockchain: A Conceptual Model Utilizing the Ethereum Consortium Approach
by Yerlan Kistaubayev, Francisco Liébana-Cabanillas, Aijaz A. Shaikh, Galimkair Mutanov, Olga Ussatova and Ainura Shinbayeva
Sustainability 2025, 17(20), 9350; https://doi.org/10.3390/su17209350 - 21 Oct 2025
Viewed by 245
Abstract
It has been recognized that Blockchain technology contributes to environmentally sustainable development goals (SDGs). It has emerged as a disruptive innovation capable of transforming various economic and social sectors significantly. This conceptual paper is driven by the need to explore how blockchain, specifically [...] Read more.
It has been recognized that Blockchain technology contributes to environmentally sustainable development goals (SDGs). It has emerged as a disruptive innovation capable of transforming various economic and social sectors significantly. This conceptual paper is driven by the need to explore how blockchain, specifically a consortium-based Ethereum architecture, can be integrated into higher education institutions to ensure data sovereignty, integrity, and verifiability while adhering to legal and ethical standards such as GDPR. We propose a multi-layered blockchain-based model for Kazakhstan’s Unified Platform of Higher Education (UPHE). This model employs hybrid on-chain/off-chain data storage, smart contract automation, and a Proof-of-Authority consensus mechanism to address system limitations, including data centralization and inadequate verification of academic credentials. Empirical simulations using Blockscout and Ethereum-compatible tools demonstrate the model’s feasibility and performance. This paper contributes to the growing discussion on educational blockchain applications by presenting a scalable, secure, and transparent architecture that aligns with institutional governance and Environmental, Social, and Governance (ESG) principles. It also supports the objectives of UN SDG 4 (i.e., Quality education) by fostering trust, transparency, and equitable access to verifiable educational credentials. Full article
(This article belongs to the Special Issue Emerging Technologies Implementation in Sustainable Management)
Show Figures

Figure 1

12 pages, 1019 KB  
Article
Blockchain and Digital Marketing: An Innovative System for Detecting Fake Comments in Search Engine Optimization Techniques and Enhancing Trust in Digital Markets
by Mouhssine Abirou, Noureddine Abghour and Zouhair Chiba
Appl. Syst. Innov. 2025, 8(5), 155; https://doi.org/10.3390/asi8050155 - 17 Oct 2025
Viewed by 399
Abstract
A significant number of digital marketers use unethical marketing methods that violate Search Engine Optimization guidelines, with the objective of deceiving engines into displaying a specific website as the top result. The practice of fake comments constitutes a violation of Search Engine Optimization [...] Read more.
A significant number of digital marketers use unethical marketing methods that violate Search Engine Optimization guidelines, with the objective of deceiving engines into displaying a specific website as the top result. The practice of fake comments constitutes a violation of Search Engine Optimization policies and is directly impeding market transparency. In addition, the absence of established standards between search engines, evaluation platforms and other trusted agencies makes exploitation easy. Therefore, in order to ensure fair competition among digital businesses, we propose a decentralized system for detecting fake comments, leveraging Blockchain technology for verification. The implementation of smart contracts as self-executing agreements will be achieved by utilizing the Ethereum network and the Truffle Suite. The Ethereum smart contracts will immutably record every comment as a transaction, eliminating any central authority. When a comment is flagged as suspicious, a digital business can trigger a verification request. Stakeholders or reviewers then vote on authenticity. Smart contracts collect these votes and issue a definitive verdict on whether the comment is fake. Full article
Show Figures

Figure 1

35 pages, 13290 KB  
Article
Blockchain-Enabled Secure Energy Transactions for Scalable and Decentralized Peer-to-Peer Solar Energy Trading with Dynamic Pricing
by Jovika Nithyanantham Balamurugan, Devineni Poojitha, Ramu Jahna Bindu, Archana Pallakonda, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Christian Napoli and Cristian Randieri
Technologies 2025, 13(10), 459; https://doi.org/10.3390/technologies13100459 - 10 Oct 2025
Viewed by 406
Abstract
Decentralized energy trading has been designed as a scalable substitute for traditional electricity markets. While blockchain technology facilitates efficient transparency and automation for peer-to-peer energy trading, the majority of current proposals lack real-time intelligence and adaptability concerning pricing strategies. This paper presents an [...] Read more.
Decentralized energy trading has been designed as a scalable substitute for traditional electricity markets. While blockchain technology facilitates efficient transparency and automation for peer-to-peer energy trading, the majority of current proposals lack real-time intelligence and adaptability concerning pricing strategies. This paper presents an innovative machine learning-driven solar energy trading platform on the Ethereum blockchain that uniquely integrates Bayesian-optimized XGBoost models with dynamic pricing mechanisms inherently incorporated within smart contracts. The principal innovation resides in the real-time amalgamation of meteorological data via Chainlink oracles with machine learning-enhanced price optimization, thereby establishing an adaptive system that autonomously responds to fluctuations in supply and demand. In contrast to existing static pricing methodologies, our framework introduces a multi-faceted dynamic pricing model that encompasses peak-hour adjustments, prediction confidence weighting, and weather-influenced corrections. The system dynamically establishes energy prices predicated on real-time supply–demand forecasts through the implementation of role-based access control, cryptographic hash functions, and ongoing integration of meteorological and machine learning data. Utilizing real-world meteorological data from La Trobe University’s UNISOLAR dataset, the Bayesian-optimized XGBoost model attains a remarkable prediction accuracy of 97.45% while facilitating low-latency price updates at 30 min intervals. The proposed system delivers robust transaction validation, secure offer creation, and scalable dynamic pricing through the seamless amalgamation of off-chain machine learning inference with on-chain smart contract execution, thereby providing a validated platform for trustless, real-time, and intelligent decentralized energy markets that effectively address the disparity between theoretical blockchain energy trading and practical implementation needs. Full article
Show Figures

Figure 1

21 pages, 1160 KB  
Article
Near Real-Time Ethereum Fraud Detection Using Explainable AI in Blockchain Networks
by Fatih Ertam
Appl. Sci. 2025, 15(19), 10841; https://doi.org/10.3390/app151910841 - 9 Oct 2025
Viewed by 738
Abstract
Blockchain technologies have profoundly transformed information systems by providing decentralized infrastructures that enhance transparency, security, and traceability. Ethereum, in particular, supports smart contracts and facilitates the development of decentralized finance (DeFi), non-fungible tokens (NFTs), and Web3 applications. However, its openness also enables illicit [...] Read more.
Blockchain technologies have profoundly transformed information systems by providing decentralized infrastructures that enhance transparency, security, and traceability. Ethereum, in particular, supports smart contracts and facilitates the development of decentralized finance (DeFi), non-fungible tokens (NFTs), and Web3 applications. However, its openness also enables illicit activities, including fraud and money laundering, through anonymous wallets. Identifying wallets involved in large transfers or abnormal transactional patterns is therefore critical to ecosystem security. This study proposes an AI-based framework employing XGBoost, LightGBM, and CatBoost to detect suspicious Ethereum wallets, achieving test accuracies between 95.83% and 96.46%. The system provides near real-time predictions for individual or recent wallet addresses using a pre-trained XGBoost model. To improve interpretability, SHAP (SHapley Additive exPlanations) visualizations are integrated, highlighting the contribution of each feature. The results demonstrate the effectiveness of AI-driven methods in monitoring and securing Ethereum transactions against fraudulent activities. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

39 pages, 5203 KB  
Technical Note
EMR-Chain: Decentralized Electronic Medical Record Exchange System
by Ching-Hsi Tseng, Yu-Heng Hsieh, Heng-Yi Lin and Shyan-Ming Yuan
Technologies 2025, 13(10), 446; https://doi.org/10.3390/technologies13100446 - 1 Oct 2025
Viewed by 512
Abstract
Current systems for exchanging medical records struggle with efficiency and privacy issues. While establishing the Electronic Medical Record Exchange Center (EEC) in 2012 was intended to alleviate these issues, its centralized structure has brought about new attack vectors, such as performance bottlenecks, single [...] Read more.
Current systems for exchanging medical records struggle with efficiency and privacy issues. While establishing the Electronic Medical Record Exchange Center (EEC) in 2012 was intended to alleviate these issues, its centralized structure has brought about new attack vectors, such as performance bottlenecks, single points of failure, and an absence of patient consent over their data. Methods: This paper describes a novel EMR Gateway system that uses blockchain technology to exchange electronic medical records electronically, overcome the limitations of current centralized systems for sharing EMR, and leverage decentralization to enhance resilience, data privacy, and patient autonomy. Our proposed system is built on two interconnected blockchains: a Decentralized Identity Blockchain (DID-Chain) based on Ethereum for managing user identities via smart contracts, and an Electronic Medical Record Blockchain (EMR-Chain) implemented on Hyperledger Fabric to handle medical record indexes and fine-grained access control. To address the dual requirements of cross-platform data exchange and patient privacy, the system was developed based on the Fast Healthcare Interoperability Resources (FHIR) standard, incorporating stringent de-identification protocols. Our system is built using the FHIR standard. Think of it as a common language that lets different healthcare systems talk to each other without confusion. Plus, we are very serious about patient privacy and remove all personal details from the data to keep it confidential. When we tested its performance, the system handled things well. It can take in about 40 transactions every second and pull out data faster, at around 49 per second. To give you some perspective, this is far more than what the average hospital in Taiwan dealt with back in 2018. This shows our system is very solid and more than ready to handle even bigger workloads in the future. Full article
Show Figures

Figure 1

31 pages, 2417 KB  
Article
An Optimized Framework for Detecting Suspicious Accounts in the Ethereum Blockchain Network
by Noha E. El-Attar, Marwa H. Salama, Mohamed Abdelfattah and Sanaa Taha
Cryptography 2025, 9(4), 63; https://doi.org/10.3390/cryptography9040063 - 28 Sep 2025
Viewed by 442
Abstract
Detecting, tracking, and preventing cryptocurrency money laundering within blockchain systems is a major challenge for governments worldwide. This paper presents an anomaly detection model based on blockchain technology and machine learning to identify cryptocurrency money-laundering accounts within Ethereum blockchain networks. The proposed model [...] Read more.
Detecting, tracking, and preventing cryptocurrency money laundering within blockchain systems is a major challenge for governments worldwide. This paper presents an anomaly detection model based on blockchain technology and machine learning to identify cryptocurrency money-laundering accounts within Ethereum blockchain networks. The proposed model employs Particle Swarm Optimization (PSO) to select optimal feature subsets. Additionally, three machine learning algorithms—XGBoost, Isolation Forest (IF), and Support Vector Machine (SVM)—are employed to detect suspicious accounts. A Genetic Algorithm (GA) is further applied to determine the optimal hyperparameters for each machine learning model. The evaluations demonstrate the superiority of the XGBoost algorithm over SVM and IF, particularly when enhanced with GA. It achieved accuracy, precision, recall, and F1-score values of 0.98, 0.97, 0.98, and 0.97, respectively. After applying GA, XGBoost’s performance metrics improved to 0.99 across all categories. Full article
(This article belongs to the Section Blockchain Security)
Show Figures

Figure 1

23 pages, 2056 KB  
Article
Blockchain and InterPlanetary Framework for Decentralized and Secure Electronic Health Record Management
by Samia Sayed, Muammar Shahrear Famous, Rashed Mazumder, Risala Tasin Khan, M. Shamim Kaiser, Mohammad Shahadat Hossain, Karl Andersson and Rahamatullah Khondoker
Blockchains 2025, 3(4), 12; https://doi.org/10.3390/blockchains3040012 - 28 Sep 2025
Viewed by 804
Abstract
Blockchain is an emerging technology that is being used to create innovative solutions in many areas, including healthcare. Nowadays healthcare systems face challenges, especially with security, trust, and remote data access. As patient records are digitized and medical systems become more interconnected, the [...] Read more.
Blockchain is an emerging technology that is being used to create innovative solutions in many areas, including healthcare. Nowadays healthcare systems face challenges, especially with security, trust, and remote data access. As patient records are digitized and medical systems become more interconnected, the risk of sensitive data being exposed to cyber threats has grown. In this evolving time for healthcare, it is important to find a balance between the advantages of new technology and the protection of patient information. The combination of blockchain–InterPlanetary File System technology and conventional electronic health record (EHR) management has the potential to transform the healthcare industry by enhancing data security, interoperability, and transparency. However, a major issue that still exists in traditional healthcare systems is the continuous problem of remote data unavailability. This research examines practical methods for safely accessing patient data from any location at any time, with a special focus on IPFS servers and blockchain technology in addition to group signature encryption. Essential processes like maintaining the confidentiality of medical records and safe data transmission could be made easier by these technologies. Our proposed framework enables secure, remote access to patient data while preserving accessibility, integrity, and confidentiality using Ethereum blockchain, IPFS, and group signature encryption, demonstrating hospital-scale scalability and efficiency. Experiments show predictable throughput reduction with file size (200 → 90 tps), controlled latency growth (90 → 200 ms), and moderate gas increase (85k → 98k), confirming scalability and efficiency under varying healthcare workloads. Unlike prior blockchain–IPFS–encryption frameworks, our system demonstrates hospital-scale feasibility through the practical integration of group signatures, hierarchical key management, and off-chain erasure compliance. This design enables scalable anonymous authentication, immediate blocking of compromised credentials, and efficient key rotation without costly re-encryption. Full article
Show Figures

Figure 1

31 pages, 2138 KB  
Article
A Sustainability Assessment of a Blockchain-Secured Solar Energy Logger for Edge IoT Environments
by Javad Vasheghani Farahani and Horst Treiblmaier
Sustainability 2025, 17(17), 8063; https://doi.org/10.3390/su17178063 - 7 Sep 2025
Viewed by 1378
Abstract
In this paper, we design, implement, and empirically evaluate a tamper-evident, blockchain-secured solar energy logging system for resource-constrained edge Internet of Things (IoT) devices. Using a Merkle tree batching approach in conjunction with threshold-triggered blockchain anchoring, the system combines high-frequency local logging with [...] Read more.
In this paper, we design, implement, and empirically evaluate a tamper-evident, blockchain-secured solar energy logging system for resource-constrained edge Internet of Things (IoT) devices. Using a Merkle tree batching approach in conjunction with threshold-triggered blockchain anchoring, the system combines high-frequency local logging with energy-efficient, cryptographically verifiable submissions to the Ethereum Sepolia testnet, a public Proof-of-Stake (PoS) blockchain. The logger captured and hashed cryptographic chains on a minute-by-minute basis during a continuous 135 h deployment on a Raspberry Pi equipped with an INA219 sensor. Thanks to effective retrial and daily rollover mechanisms, it committed 130 verified Merkle batches to the blockchain without any data loss or unverifiable records, even during internet outages. The system offers robust end-to-end auditability and tamper resistance with low operational and carbon overhead, which was tested with comparative benchmarking against other blockchain logging models and conventional local and cloud-based loggers. The findings illustrate the technical and sustainability feasibility of digital audit trails based on blockchain technology for distributed solar energy systems. These audit trails facilitate scalable environmental, social, and governance (ESG) reporting, automated renewable energy certification, and transparent carbon accounting. Full article
Show Figures

Figure 1

37 pages, 2381 KB  
Review
Exploring the Synergy Between Ethereum Layer 2 Solutions and Machine Learning to Improve Blockchain Scalability
by Andrada Cristina Artenie, Diana Laura Silaghi and Daniela Elena Popescu
Computers 2025, 14(9), 359; https://doi.org/10.3390/computers14090359 - 29 Aug 2025
Viewed by 1563
Abstract
Blockchain technologies, despite their profound transformative potential across multiple industries, continue to face significant scalability challenges. These limitations are primarily observed in restricted transaction throughput and elevated latency, which hinder the ability of blockchain networks to support widespread adoption and high-volume applications. To [...] Read more.
Blockchain technologies, despite their profound transformative potential across multiple industries, continue to face significant scalability challenges. These limitations are primarily observed in restricted transaction throughput and elevated latency, which hinder the ability of blockchain networks to support widespread adoption and high-volume applications. To address these issues, research has predominantly focused on Layer 1 solutions that seek to improve blockchain performance through fundamental modifications to the core protocol and architectural design. Alternatively, Layer 2 solutions enable off-chain transaction processing, increasing throughput and reducing costs while maintaining the security of the base layer. Despite their advantages, Layer 2 approaches are less explored in the literature. To address this gap, this review conducts an in-depth analysis on Ethereum Layer 2 frameworks, emphasizing their integration with machine-learning techniques, with the goal of promoting the prevailing best practices and emerging applications; this review also identifies key technical and operational challenges hindering widespread adoption. Full article
Show Figures

Figure 1

39 pages, 5305 KB  
Article
Generative AI and Blockchain-Integrated Multi-Agent Framework for Resilient and Sustainable Fruit Cold-Chain Logistics
by Abhirup Khanna, Sapna Jain, Anushree Sah, Sarishma Dangi, Abhishek Sharma, Sew Sun Tiang, Chin Hong Wong and Wei Hong Lim
Foods 2025, 14(17), 3004; https://doi.org/10.3390/foods14173004 - 27 Aug 2025
Viewed by 1103
Abstract
The cold-chain supply of perishable fruits continues to face challenges such as fuel wastage, fragmented stakeholder coordination, and limited real-time adaptability. Traditional solutions, based on static routing and centralized control, fall short in addressing the dynamic, distributed, and secure demands of modern food [...] Read more.
The cold-chain supply of perishable fruits continues to face challenges such as fuel wastage, fragmented stakeholder coordination, and limited real-time adaptability. Traditional solutions, based on static routing and centralized control, fall short in addressing the dynamic, distributed, and secure demands of modern food supply chains. This study presents a novel end-to-end architecture that integrates multi-agent reinforcement learning (MARL), blockchain technology, and generative artificial intelligence. The system features large language model (LLM)-mediated negotiation for inter-enterprise coordination, Pareto-based reward optimization balancing spoilage, energy consumption, delivery time, and climate and emission impact. Smart contracts and Non-Fungible Token (NFT)-based traceability are deployed over a private Ethereum blockchain to ensure compliance, trust, and decentralized governance. Modular agents—trained using centralized training with decentralized execution (CTDE)—handle routing, temperature regulation, spoilage prediction, inventory, and delivery scheduling. Generative AI simulates demand variability and disruption scenarios to strengthen resilient infrastructure. Experiments demonstrate up to 50% reduction in spoilage, 35% energy savings, and 25% lower emissions. The system also cuts travel time by 30% and improves delivery reliability and fruit quality. This work offers a scalable, intelligent, and sustainable supply chain framework, especially suitable for resource-constrained or intermittently connected environments, laying the foundation for future-ready food logistics systems. Full article
Show Figures

Figure 1

22 pages, 1908 KB  
Article
AI-Blockchain Integration for Real-Time Cybersecurity: System Design and Evaluation
by Sam Goundar and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 59; https://doi.org/10.3390/jcp5030059 - 14 Aug 2025
Viewed by 2829
Abstract
This paper proposes and evaluates a novel real-time cybersecurity framework integrating artificial intelligence (AI) and blockchain technology to enhance the detection and auditability of cyber threats. Traditional cybersecurity approaches often lack transparency and robustness in logging and verifying AI-generated decisions, hindering forensic investigations [...] Read more.
This paper proposes and evaluates a novel real-time cybersecurity framework integrating artificial intelligence (AI) and blockchain technology to enhance the detection and auditability of cyber threats. Traditional cybersecurity approaches often lack transparency and robustness in logging and verifying AI-generated decisions, hindering forensic investigations and regulatory compliance. To address these challenges, we developed an integrated solution combining a convolutional neural network (CNN)-based anomaly detection module with a permissioned Ethereum blockchain to securely log and immutably store AI-generated alerts and relevant metadata. The proposed system employs smart contracts to automatically validate AI alerts and ensure data integrity and transparency, significantly enhancing auditability and forensic analysis capabilities. To rigorously test and validate our solution, we conducted comprehensive experiments using the CICIDS2017 dataset and evaluated the system’s detection accuracy, precision, recall, and real-time responsiveness. Additionally, we performed penetration testing and security assessments to verify system resilience against common cybersecurity threats. Results demonstrate that our AI-blockchain integrated solution achieves superior detection performance while ensuring real-time logging, transparency, and auditability. The integration significantly strengthens system robustness, reduces false positives, and provides clear benefits for cybersecurity management, especially in regulated environments. This paper concludes by outlining potential avenues for future research, particularly extending blockchain scalability, privacy enhancements, and optimizing performance for high-throughput cybersecurity applications. Full article
(This article belongs to the Section Security Engineering & Applications)
Show Figures

Figure 1

21 pages, 2365 KB  
Article
Development of an Optimization Algorithm for Designing Low-Carbon Concrete Materials Standardization with Blockchain Technology and Ensemble Machine Learning Methods
by Zilefac Ebenezer Nwetlawung and Yi-Hsin Lin
Buildings 2025, 15(16), 2809; https://doi.org/10.3390/buildings15162809 - 8 Aug 2025
Cited by 2 | Viewed by 845
Abstract
This study presents SmartMix Web3, a framework combining ensemble machine learning and blockchain technology to optimize low-carbon concrete design. It addresses two key challenges: (1) the limitations of conventional models in predicting concrete performance, and (2) ensuring data reliability and overcoming collaboration issues [...] Read more.
This study presents SmartMix Web3, a framework combining ensemble machine learning and blockchain technology to optimize low-carbon concrete design. It addresses two key challenges: (1) the limitations of conventional models in predicting concrete performance, and (2) ensuring data reliability and overcoming collaboration issues in AI-driven sustainable construction. Validated with 61 real-world experiments in Cameroon and 752 mix designs, the framework shows major improvements in predictive accuracy and decentralized trust. To address the first research question, a stacked ensemble model comprising Extreme Gradient Boosting (XGBoost)–Random Forest and a Convolutional Neural Network (CNN) was developed, achieving a 22% reduction in Root Mean Square Error (RMSE) for compressive strength prediction and embodied carbon estimation compared to traditional methods. The 29% reduction in Mean Absolute Error (MAE) results confirms the superiority of Extreme Learning Machine (EML) in low-carbon concrete performance prediction. For the second research question, SmartMix Web3 employs blockchain to ensure tamper-proof traceability and promote collaboration. Deployed on Ethereum, it automates verification of tokenized Environmental Product Declarations via smart contracts, reducing disputes and preserving data integrity. Federated learning supports decentralized training across nine batching plants, with Secure Hash Algorithm (SHA)-256 checks ensuring privacy. Field implementation in Cameroon yielded annual cost savings of FCFA 24.3 million and a 99.87 kgCO2/m3 reduction per mix design. By uniting EML precision with blockchain transparency, SmartMix Web3 offers practical and scalable benefits for sustainable construction in developing economies. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 896 KB  
Article
Potential Vulnerabilities of Cryptographic Primitives in Modern Blockchain Platforms
by Evgeniya Ishchukova, Sergei Petrenko, Alexey Petrenko, Konstantin Gnidko and Alexey Nekrasov
Sci 2025, 7(3), 112; https://doi.org/10.3390/sci7030112 - 5 Aug 2025
Viewed by 636
Abstract
Today, blockchain technologies are a separate, rapidly developing area. With rapid development, they open up a number of scientific problems. One of these problems is the problem of reliability, which is primarily associated with the use of cryptographic primitives. The threat of the [...] Read more.
Today, blockchain technologies are a separate, rapidly developing area. With rapid development, they open up a number of scientific problems. One of these problems is the problem of reliability, which is primarily associated with the use of cryptographic primitives. The threat of the emergence of quantum computers is now widely discussed, in connection with which the direction of post-quantum cryptography is actively developing. Nevertheless, the most popular blockchain platforms (such as Bitcoin and Ethereum) use asymmetric cryptography based on elliptic curves. Here, cryptographic primitives for blockchain systems are divided into four groups according to their functionality: keyless, single-key, dual-key, and hybrid. The main attention in the work is paid to the most significant cryptographic primitives for blockchain systems: keyless and single-key. This manuscript discusses possible scenarios in which, during practical implementation, the mathematical foundations embedded in the algorithms for generating a digital signature and encrypting data using algorithms based on elliptic curves are violated. In this case, vulnerabilities arise that can lead to the compromise of a private key or a substitution of a digital signature. We consider cases of vulnerabilities in a blockchain system due to incorrect use of a cryptographic primitive, describe the problem, formulate the problem statement, and assess its complexity for each case. For each case, strict calculations of the maximum computational costs are given when the conditions of the case under consideration are met. Among other things, we present a new version of the encryption algorithm for data stored in blockchain systems or transmitted between blockchain systems using elliptic curves. This algorithm is not the main blockchain algorithm and is not included in the core of modern blockchain systems. This algorithm allows the use of the same keys that system users have in order to store sensitive user data in an open blockchain database in encrypted form. At the same time, possible vulnerabilities that may arise from incorrect implementation of this algorithm are considered. The scenarios formulated in the article can be used to test the reliability of both newly created blockchain platforms and to study long-existing ones. Full article
(This article belongs to the Section Computer Sciences, Mathematics and AI)
Show Figures

Figure 1

17 pages, 1027 KB  
Article
AI-Driven Security for Blockchain-Based Smart Contracts: A GAN-Assisted Deep Learning Approach to Malware Detection
by Imad Bourian, Lahcen Hassine and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 53; https://doi.org/10.3390/jcp5030053 - 1 Aug 2025
Viewed by 1892
Abstract
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats [...] Read more.
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats to intelligent systems and IoT applications, leading to data breaches and financial losses. Traditional detection techniques, such as manual analysis and static automated tools, suffer from high false positives and undetected security vulnerabilities. To address these problems, this paper proposes an Artificial Intelligence (AI)-based security framework that integrates Generative Adversarial Network (GAN)-based feature selection and deep learning techniques to classify and detect malware attacks on smart contract execution in the blockchain decentralized network. After an exhaustive pre-processing phase yielding a dataset of 40,000 malware and benign samples, the proposed model is evaluated and compared with related studies on the basis of a number of performance metrics including training accuracy, training loss, and classification metrics (accuracy, precision, recall, and F1-score). Our combined approach achieved a remarkable accuracy of 97.6%, demonstrating its effectiveness in detecting malware and protecting blockchain systems. Full article
Show Figures

Figure 1

Back to TopTop