Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Eugenia dysenterica DC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 840 KB  
Article
Enhanced Recovery of Bioactive Compounds from Cagaita and Mamacadela Fruits Using Natural Deep Eutectic Solvents (NADES) and Ethanol: A Comparative Study
by Jaqueline Ferreira Silva, Carmen Torres Guedes, Eloize da Silva Alves, Évelin Lemos de Oliveira, Eduardo Cesar Meurer, Suelen Siqueira dos Santos, Mônica Regina da Silva Scapim and Grasiele Scaramal Madrona
Plants 2025, 14(16), 2596; https://doi.org/10.3390/plants14162596 - 21 Aug 2025
Viewed by 509
Abstract
The native fruits of the Cerrado have an interesting composition of bioactive compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities, with technological potential for functional industries. This study investigated the extraction of bioactive compounds in cagaita and mamacadela fruits, under different conditions, using [...] Read more.
The native fruits of the Cerrado have an interesting composition of bioactive compounds responsible for antioxidant, anti-inflammatory, and antimicrobial activities, with technological potential for functional industries. This study investigated the extraction of bioactive compounds in cagaita and mamacadela fruits, under different conditions, using eutectic solvents based on choline chloride (CC) with citric acid (CA) or tartaric acid (TA), plus ethanol as reference. For a better understanding of the extracts, their antioxidant capacity was assessed by the DPPH, FRAP, ABTS•+, and total phenolic compounds and flavonoids assays, as well as for color, water activity, and identification of bioactive compounds by mass spectrometry. Additionally, the carotenoid contents were evaluated in the ethanolic extracts. The results showed that ethanol was efficient for the extraction of flavonoids and presented advantages demonstrated in the antioxidant analyses of ABTS•+ and FRAP. However, eutectic solvents stood out in the extraction of phenolic compounds, with yields 14.0 and 4.5 times higher than ethanol for mamacadela and cagaita, respectively. In addition, when compared to cagaita, mamacadela had twice the carotenoid content. Furthermore, the CC:TA solvent was the most efficient, demonstrating, by DI-ESI-MS, 29 phenolic compounds in mamacadela and 27 in cagaita. Therefore, the extracts obtained present potential for use as natural pigments, adding value to the fruits and encouraging their exploration by industries. Full article
Show Figures

Figure 1

23 pages, 2057 KB  
Article
Bioinputs from Eugenia dysenterica DC. (Myrtaceae): Optimization of Ultrasound-Assisted Extraction and Assessment of Antioxidant, Antimicrobial, and Antibiofilm Activities
by Fernando Gomes Barbosa, Gabriel Fernandes Silva, Valter Lúcio Pereira de Oliveira, Lorrainy Alves Cassemiro Kubijan, Leonardo Gomes Costa, Anielly Monteiro de Melo, Monatha Nayara Guimarães Teófilo, Cristiane Maria Ascari Morgado, André José de Campos, Josana de Castro Peixoto, Leonardo Luiz Borges, Carlos de Melo e Silva Neto, Eliete Souza Santana and Joelma Abadia Marciano de Paula
Molecules 2025, 30(5), 1115; https://doi.org/10.3390/molecules30051115 - 28 Feb 2025
Cited by 1 | Viewed by 1066
Abstract
By-products of fruit processing may contain bioactive compounds with potential application as bioinputs. This study optimized the ultrasound-assisted extraction (UAE) of phenolic compounds from the by-products of Eugenia dysenterica DC (Myrtaceae) fruit to obtain bioinputs with antioxidant, antimicrobial, and antibiofilm activities. The fruit [...] Read more.
By-products of fruit processing may contain bioactive compounds with potential application as bioinputs. This study optimized the ultrasound-assisted extraction (UAE) of phenolic compounds from the by-products of Eugenia dysenterica DC (Myrtaceae) fruit to obtain bioinputs with antioxidant, antimicrobial, and antibiofilm activities. The fruit by-products (seeds and peels) were subjected to UAE optimization using the Box–Behnken design and response surface methodology. Two optimal conditions were defined: 1-plant material/solvent ratio of 0.01 g/mL, time of 40 min, and ethanol content of 30%; 2–0.19 g/mL, 39 min, and 46%. The bioinputs (liquid extract—LQE; lyophilized extract—LYE), obtained under the optimal conditions, were tested for antioxidant activity (ABTS, FRAP, and DPPH). LQE: 1633.13 µM Trolox/g, 1633.60 µM FeSO4/g and 73.35 g sample/g DPPH; LYE: 1379.75 µM Trolox/g, 1692.09 µM FeSO4/g and 83.35 g sample/g DPPH. For antimicrobial activity, both extracts presented MBC < 62.5 mg/mL and MIC and MBC of 2.5 mg/mL for P. aeruginosa. LQE presented antibiofilm action for S. coagulase (50 mg/mL) and Streptococcus spp. (12.5 mg/mL); LYE for P. aeruginosa (50 mg/mL; 12.5 mg/mL), E. coli (25 mg/mL). The bioinputs obtained by UAE under optimized conditions for phenolic compounds present antioxidant, antimicrobial, and antibiofilm activities. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

17 pages, 1773 KB  
Article
Influence of Intercropping on Eugenia dysenterica (Mart.) DC. Fruit Quality
by Micael Jose de Almeida, Paulo Dornelles, Thaisa Alves Matos de Rezende, Ludiele de Lima da Silva, Fabiano Guimarães Silva, Larissa Graziele Rauber Duarte, Josemar Gonçalves de Oliveira Filho and Mariana Buranelo Egea
Horticulturae 2024, 10(10), 1028; https://doi.org/10.3390/horticulturae10101028 - 27 Sep 2024
Cited by 1 | Viewed by 1243
Abstract
Intercropping to integrate cover crops with fruit trees in the Brazilian Cerrado is an innovative strategy for creating a more sustainable food system. This agricultural practice contributes to maintaining soil quality and improves fruits’ chemical and technological properties, such as those of Eugenia [...] Read more.
Intercropping to integrate cover crops with fruit trees in the Brazilian Cerrado is an innovative strategy for creating a more sustainable food system. This agricultural practice contributes to maintaining soil quality and improves fruits’ chemical and technological properties, such as those of Eugenia dysenterica (Mart.) DC. (cagaita). Given the significant fruit production potential of the Brazilian Cerrado, this study aimed to investigate the impact of an intercropping system involving cagaita trees and various cover crops, specifically Calopogonium mucunoides Desv. (CA), Crotalaria juncea (CR), Lablab purpureus (L.) Sweet (LA), brachiaria (Brachiaria decumbens L.) + nitrogen source (urea) (BRN), and brachiaria (Brachiaria decumbens L.) (BR), on the chemical composition, technological properties, and morphological characteristics of cagaita fruits. Treatments involving leguminous cover crops (CA, LA, and CR) significantly increased nitrogen (N) levels in cagaita fruits, comparable to those observed with the BRN treatment. However, the treatment utilizing BR resulted in the highest levels of macrominerals (Ca, Mg, and K), which are essential for meeting the Recommended Dietary Intake (RDI) and demonstrated a notable positive impact on pulp yield (>78%). Additionally, the antioxidant potential and phenolic content were the highest in the BR, CA, and LA treatments, with the lowest levels recorded for the CR treatment. This study underscores the importance of sustainable agricultural practices in the Brazilian Cerrado, demonstrating their potential to enhance the nutritional quality (both micro and macronutrients), technological properties, and overall development of Eugenia dysenterica DC. fruits, thereby adding value to food and contributing to a more resilient and productive food system. Full article
Show Figures

Figure 1

20 pages, 7604 KB  
Article
Post-Harvest Fruit Conservation of Eugenia dysenterica DC., Spondias purpurea L., Hancornia speciosa Gomes and Talisia esculenta Radlk
by Raquel Rodrigues Soares Sobral, Gisele Polete Mizobutsi, Edson Hiydu Mizobutsi, Flávia Soares Aguiar, Luciele Barboza de Almeida, Lucicleia Borges Almeida, Rayane Carneiro dos Santos, Lucas Maciel de Oliveira, Diego Batista Souza and Jéfferson de Oliveira Costa
AgriEngineering 2024, 6(3), 2306-2325; https://doi.org/10.3390/agriengineering6030135 - 19 Jul 2024
Viewed by 1647
Abstract
The high rate of perishability of fruits such as cagaita (Eugenia dysenterica DC.), seriguela (Spondias purpurea L.), mangaba (Hancornia speciosa Gomes) and pitomba (Talisia esculenta Radlk.) makes it necessary to develop adequate conservation techniques to increase post-harvest shelf life. [...] Read more.
The high rate of perishability of fruits such as cagaita (Eugenia dysenterica DC.), seriguela (Spondias purpurea L.), mangaba (Hancornia speciosa Gomes) and pitomba (Talisia esculenta Radlk.) makes it necessary to develop adequate conservation techniques to increase post-harvest shelf life. The aim of this research was to evaluate the post-harvest quality attributes of cagaita, seriguela, mangaba and pitomba fruits stored in different types of packaging during certain periods. The treatments were defined by the combination of three types of packaging (low-density polyethylene (LDPE), polyvinyl chloride (PVC) and without packaging) and seven storage periods. Total soluble solids, titratable acidity, hydrogen potential (pH), fruit firmness and loss of fresh mass were analyzed. Fruits packaged with LDPE presented the lowest values of fresh mass loss: 2.7, 2.3, 4.2 and 1.1% for cagaita, seriguela, mangaba and pitomba, respectively. Furthermore, LPDE packaging maintained the quality attributes in all fruits analyzed. PVC packaging was more efficient in maintaining fruit firmness, with average values of 0.03 N. Atmospheric modification techniques, such as LDPE and PVC packaging, make it possible to reduce metabolic activity, ensuring better post-harvest quality and increasing the storage period of fruits that occur in the semiarid region of Minas Gerais. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

11 pages, 1227 KB  
Article
Acetic Fermentation of Cagaita Pulp: Technological and Chemical Characteristics
by Jeisa Farias De Sousa Santana, Guilherme Freitas de Lima Hercos, Josemar Gonçalves de Oliveira Filho, Daiane Costa dos Santos, Marilene Silva Oliveira, Bheatriz Silva Morais de Freitas, Fabiano Guimarães Silva and Mariana Buranelo Egea
Beverages 2024, 10(2), 28; https://doi.org/10.3390/beverages10020028 - 12 Apr 2024
Cited by 2 | Viewed by 1974
Abstract
The Brazilian Cerrado region has a rich plant diversity, with fruits that have peculiar and unique sensory characteristics. For these reasons, using these fruits for biotechnological production is a promising alternative, mainly to protect this biome from deforestation and degradation. The production of [...] Read more.
The Brazilian Cerrado region has a rich plant diversity, with fruits that have peculiar and unique sensory characteristics. For these reasons, using these fruits for biotechnological production is a promising alternative, mainly to protect this biome from deforestation and degradation. The production of fermented acetic acid is an option to add value to native fruits and offer the market beverages with better nutritional quality and bioactive compounds. This work aimed to characterize fruits and to develop cagaita (Eugenia dysenterica DC.) acetic fermented beverage. The fruits were subjected to physical-chemical analyses in the first part. Subsequently, different treatments for fermentation were tested using two types of enzymes (amylase and pectinase), two subspecies of Saccharomyces cerevisiae yeast (UFLA CA11 and thermoresistant LNF Angel), and the chaptalization of the must with sucrose (16 °Brix). Alcoholic fermentation was carried out in an incubator with temperature control at 34 ± 1 °C. The pH, total soluble solids, titratable acidity, alcohol content, and density of the fermented products were monitored daily. The chaptalized must with amylase addition and thermoresistant yeast had the best performance during alcoholic fermentation, demonstrating that thermoresistant yeast is an economically advantageous and efficient alternative for the cagaita juice fermentation process. Subsequently, acetic fermentation was carried out using the slow method. Heat-resistant yeast without added enzymes was used to produce cagaita acetic fermented beverages within the parameters of the Brazilian legislation. Furthermore, phenolic compounds and antioxidant activity in the final product were observed. The work demonstrated the possibility of using cagaita fruits in biotechnological processes to produce new food products. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

19 pages, 1775 KB  
Review
Nutraceutic Potential of Bioactive Compounds of Eugenia dysenterica DC in Metabolic Alterations
by Lidiani Figueiredo Santana, Sandramara Sasso, Diana Figueiredo Santana Aquino, Karine de Cássia Freitas, Rita de Cássia Avellaneda Guimarães, Arnildo Pott, Valter Aragão do Nascimento, Danielle Bogo, Patrícia de Oliveira Figueiredo and Priscila Aiko Hiane
Molecules 2022, 27(8), 2477; https://doi.org/10.3390/molecules27082477 - 12 Apr 2022
Cited by 5 | Viewed by 3260
Abstract
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical [...] Read more.
The fruit and leaves of Eugenia dysenterica DC., locally known as cagaita, are rich in antioxidant glycosylated quercetin derivatives and phenolic compounds that have beneficial effects on diabetes mellitus, hypertension and general inflammation. We conducted a literature search to investigate the nutraceutical potentials of these phenolic compounds for treating obesity, diabetes mellitus and intestinal inflammatory disease. The phenolic compounds in E. dysenterica have demonstrated effects on carbohydrate metabolism, which can prevent the development of these chronic diseases and reduce LDL (low-density lipoprotein) cholesterol and hypertension. E. dysenterica also improves intestinal motility and microbiota and protects gastric mucosa, thereby preventing inflammation. However, studies are necessary to identify the mechanism by which E. dysenterica nutraceutical compounds act on such pathological processes to support future research. Full article
(This article belongs to the Special Issue Discovery of Bioactive Ingredients from Natural Products, 2nd Edition)
Show Figures

Figure 1

19 pages, 3307 KB  
Article
Growth, Physiology and Nutrient Use Efficiency in Eugenia dysenterica DC under Varying Rates of Nitrogen and Phosphorus
by Daniele Nogueira dos Reis, Fabiano Guimarães Silva, Reginaldo da Costa Santana, Thales Caetano de Oliveira, Mariângela Brito Freiberger, Fábia Barbosa da Silva, Elídio Monteiro Júnior and Caroline Müller
Plants 2020, 9(6), 722; https://doi.org/10.3390/plants9060722 - 8 Jun 2020
Cited by 2 | Viewed by 3703
Abstract
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen [...] Read more.
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen (N) and phosphorus (P) supplementation on the physiology, growth and nutrient uptake, and use efficiencies of E. dysenterica seedlings grown in glasshouse conditions. The following rates were used in separate experiments: 0, 50, 100, 200, and 400 mg dm−3 N and 0, 100, 200, 400, and 600 mg dm−3 P. The experiment was conducted in a randomized block with four replications. The lowest N rate (50 mg dm−3) increased the stomatal conductance (gS) and, consequently, resulted in the highest transpiration (E), electron transport (ETR), and photosynthetic (A) rates. Also, rates of 50 mg dm−3 and 100 mg dm−3 N increased the Root Uptake Efficiency (RUE) and plant Nutrient Use Efficiency (NUE) for macronutrients and the RUE for micronutrients, stimulating plant growth. Phosphorous fertilization resulted in the maximum values for photosynthesis, electron transport rate, total dry mass, and NUE at the 200 mg dm−3 rate. The results of this study suggest that fertilization with 50 mg dm−3 N and 200 mg dm−3 P is suitable for the development of E. dysenterica seedlings. Full article
Show Figures

Graphical abstract

16 pages, 2063 KB  
Article
Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves
by Sandra Márcia Mazutti da Silva, Claudio Rodrigues Rezende Costa, Guilherme Martins Gelfuso, Eliete Neves Silva Guerra, Yanna Karla De Medeiros Nóbrega, Sueli Maria Gomes, Aline Pic-Taylor, Yris Maria Fonseca-Bazzo, Damaris Silveira and Pérola de Oliveira Magalhães
Molecules 2019, 24(1), 2; https://doi.org/10.3390/molecules24010002 - 20 Dec 2018
Cited by 53 | Viewed by 10557
Abstract
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by [...] Read more.
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by studying the ability of the essential oil of Eugenia dysenterica DC leaves (oEd) to stimulate in vitro skin cell migration. Skin cytotoxicity was evaluated using a fibroblast cell line (L929) by MTT assay. The oil chemical profile was investigated by GC-MS. Moreover, the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in the macrophage cell line (RAW 264.7) tested. The Chick Chorioallantoic Membrane (CAM) assay was used to evaluate the angiogenic activity and irritating potential of the oil. The oEd induces skin cell migration in a scratch assay at a concentration of 542.2 µg/mL. α-humulene and β-caryophyllene, the major compounds of this oil, as determined by GC-MS, may partly explain the migration effect. The inhibition of nitric oxide by oEd and α-humulene suggested an anti-inflammatory effect. The CAM assay showed that treatment with oEd ≤ 292 µg/mL did not cause skin injury, and that it can promote angiogenesis in vivo. Hence, these results indicate the feasibility of the essential oil of Eugenia dysenterica DC leaves to developed dermatological products capable of helping the body to repair damaged tissue. Full article
(This article belongs to the Special Issue Biological Activities of Essential Oils)
Show Figures

Figure 1

24 pages, 780 KB  
Review
Bioactive Compounds Found in Brazilian Cerrado Fruits
by Elisa Flávia Luiz Cardoso Bailão, Ivano Alessandro Devilla, Edemilson Cardoso Da Conceição and Leonardo Luiz Borges
Int. J. Mol. Sci. 2015, 16(10), 23760-23783; https://doi.org/10.3390/ijms161023760 - 9 Oct 2015
Cited by 121 | Viewed by 15829
Abstract
Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the [...] Read more.
Functional foods include any natural product that presents health-promoting effects, thereby reducing the risk of chronic diseases. Cerrado fruits are considered a source of bioactive substances, mainly phenolic compounds, making them important functional foods. Despite this, the losses of natural vegetation in the Cerrado are progressive. Hence, the knowledge propagation about the importance of the species found in Cerrado could contribute to the preservation of this biome. This review provides information about Cerrado fruits and highlights the structures and pharmacologic potential of functional compounds found in these fruits. Compounds detected in Caryocar brasiliense Camb. (pequi), Dipteryx alata Vog. (baru), Eugenia dysenterica DC. (cagaita), Eugenia uniflora L. (pitanga), Genipa americana L. (jenipapo), Hancornia speciosa Gomes (mangaba), Mauritia flexuosa L.f. (buriti), Myrciaria cauliflora (DC) Berg (jabuticaba), Psidium guajava L. (goiaba), Psidium spp. (araçá), Solanum lycocarpum St. Hill (lobeira), Spondias mombin L. (cajá), Annona crassiflora Mart. (araticum), among others are reported here. Full article
Show Figures

Graphical abstract

Back to TopTop