Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,013)

Search Parameters:
Keywords = FST

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2932 KB  
Article
KMO Inhibition Improves Seizures and Depressive-like Behaviors Without Aggravating Cognitive Impairment in Epileptic Mice
by Jingwen Xu, Yifen Huang, Liping Wei, Ziting Kong, Junling Fu and Lun Cai
Curr. Issues Mol. Biol. 2025, 47(9), 705; https://doi.org/10.3390/cimb47090705 (registering DOI) - 1 Sep 2025
Abstract
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: [...] Read more.
The objective of this study is to investigate the effects of kynurenine-3-monooxygenase (KMO) inhibition on seizures, depressive-like behaviors, and cognitive functions in epileptic mice, and to elucidate its impact on the kynurenine metabolic pathway. Male Kunming (KM) mice were randomized into four groups: the epileptic model (EM), epileptic model treated with Ro 61-8048 (RM), healthy control (HC), and healthy control treated with Ro 61-8048 (RC). Chronic epilepsy was induced in the EM and RM groups via an intraperitoneal pilocarpine injection (225 mg/kg). The RM and RC groups received Ro 61-8048 (42 mg/kg). The seizure frequency was monitored continuously using a 24 h video recording. Depressive-like behaviors were assessed with the sucrose preference test (SPT) and forced swim test (FST); cognitive function was evaluated with the Y-maze test and open field test (OFT). The concentrations of kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA) were determined by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Compared to the EM group, the RM group exhibited a reduced seizure frequency and severity (p < 0.05), ameliorated depressive-like behaviors (increased sucrose preference in SPT, and decreased immobility time in FST, p < 0.05), and enhanced cognitive performance (elevated spontaneous alternation and reduced non-sequential alternation in a Y-maze, and increased time and distance in a central open field area, p < 0.05). Mechanistically, compared to the RC group, the RM group showed an increased KYNA/KYN ratio, and a decreased 3-HK/KYN ratio (p < 0.05) KMO inhibition rectifies the neurotoxic–neuroprotective imbalance in the kynurenine pathway (downregulating the 3-HK/3-HANA ratio and upregulating the KYNA/KYN ratio), thereby decreasing seizures, depressive-like behaviors, and cognitive deficits. These findings suggest KMO inhibition is a potential therapeutic strategy for epilepsy-associated depression. A further investigation of its mechanisms and clinical applicability is warranted. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 3805 KB  
Article
Microsatellite Markers as a Useful Tool for Species Identification and Assessment of Genetic Diversity of the Endangered Species Populus nigra L. in the Czech Republic
by Helena Cvrčková, Pavlína Máchová, Luďka Čížková, Kateřina Vítová, Olga Trčková and Martin Fulín
Forests 2025, 16(9), 1389; https://doi.org/10.3390/f16091389 - 30 Aug 2025
Viewed by 147
Abstract
The population size of black poplar (Populus nigra L.), once an important part of floodplain forests in the Czech Republic, has greatly declined due to human activity. In this study, we applied microsatellite (SSR) markers to identify species and assess genetic diversity, [...] Read more.
The population size of black poplar (Populus nigra L.), once an important part of floodplain forests in the Czech Republic, has greatly declined due to human activity. In this study, we applied microsatellite (SSR) markers to identify species and assess genetic diversity, with the aim of supporting conservation of this endangered species. A total of 378 poplar trees were analyzed following field surveys. Five diagnostic SSR markers with species-specific alleles for P. deltoides Bartr. ex Marsh. enabled the identification of 39 interspecific hybrids, which were distinguished from native P. nigra. Thirteen SSR loci were used to evaluate genetic diversity among confirmed P. nigra individuals. The results revealed high genetic variation, with 66% of pairwise genotype comparisons differing at all loci. After excluding 45 genetically similar individuals, 292 genetically verified and polymorphic P. nigra trees were selected as potential sources of reproductive material. Genetic differentiation (Fst) was highest between P. nigra and P. deltoides (0.27), and lowest between reference Populus ×euroamericana clones and detected hybrid poplars (0.05) from natural localities. Distinct genetic structures were identified among P. nigra, P. deltoides, and hybrid individuals. These findings provide essential data for the protection, reproduction, and planting of black poplar. Full article
(This article belongs to the Special Issue Genetic Diversity of Forest: Insights on Conservation)
Show Figures

Figure 1

12 pages, 1746 KB  
Article
Population Genetic Structure, Historical Effective Population Size, and Dairy Trait Selection Signatures in Chinese Red Steppe and Holstein Cattle
by Peng Niu, Xiaopeng Li, Xueyan Wang, Huimin Qu, Hong Chen, Fei Huang, Kai Hu, Di Fang and Qinghua Gao
Animals 2025, 15(17), 2516; https://doi.org/10.3390/ani15172516 - 27 Aug 2025
Viewed by 243
Abstract
Background: Chinese Red Steppe cattle (CRS) combine indigenous environmental resilience with moderate dairy performance, whereas Holstein cattle (HOL), despite their high milk yield, suffer reduced genetic diversity and compromised adaptation. A comparative analysis of their population genetic architecture and selection signatures can reveal [...] Read more.
Background: Chinese Red Steppe cattle (CRS) combine indigenous environmental resilience with moderate dairy performance, whereas Holstein cattle (HOL), despite their high milk yield, suffer reduced genetic diversity and compromised adaptation. A comparative analysis of their population genetic architecture and selection signatures can reveal valuable targets for CRS dairy improvement. Methods: We genotyped 61 CRS and 392 HOL individuals using the Illumina GGP Bovine 100K SNP array and performed stringent quality control. Population structure was assessed via principal component analysis, neighbor-joining trees, and sparse nonnegative matrix factorization. Historical effective population size (Ne) and divergence time were inferred with SMC++. Genome-wide selection scans combined Fixation Index (FST) and Cross-Population Composite Likelihood Ratio test (XP-CLR); overlapping high-confidence regions were annotated and subjected to GO and KEGG enrichment analyses. Results: CRS and HOL were clearly separated along PC1 (explaining 57.48% of variance), with CRS exhibiting high internal homogeneity and weak substructure, versus greater diversity and complex substructure in HOL. SMC++ indicated a split approximately 3500 years ago (700 generations) and a pronounced recent decline in Ne for both breeds. Joint selection mapping identified 767 candidate genes; notably, the ACSM1/2B/3/4 cluster on chromosome 25—key to butanoate metabolism—showed the strongest signal. Enrichment analyses highlighted roles for proteasome function, endoplasmic reticulum stress response, ion homeostasis, and RNA processing in regulating milk fat synthesis and protein secretion. Conclusion: This study delineates the genetic divergence and demographic history of CRS and HOL, and pinpoints core genes and pathways—particularly those governing butanoate metabolism and protein quality control—underlying dairy traits. These findings furnish molecular markers and theoretical guidance for precision breeding and sustainable utilization of Chinese Red Steppe cattle. Full article
Show Figures

Figure 1

21 pages, 3366 KB  
Article
Patterns of Genetic and Clonal Diversity in Myriophyllum spicatum in Streams and Reservoirs of Republic of Korea
by Eun-Hye Kim, Kang-Rae Kim, Mi-Hwa Lee, Jaeduk Goh and Jeong-Nam Yu
Plants 2025, 14(17), 2648; https://doi.org/10.3390/plants14172648 - 26 Aug 2025
Viewed by 384
Abstract
Myriophyllum spicatum is a globally distributed aquatic plant capable of sexual and clonal reproduction. Despite its ecological importance and biochemical potential, studies on its genetic and clonal structure in freshwater systems throughout South Korea remain limited. We investigated the genetic and clonal diversity [...] Read more.
Myriophyllum spicatum is a globally distributed aquatic plant capable of sexual and clonal reproduction. Despite its ecological importance and biochemical potential, studies on its genetic and clonal structure in freshwater systems throughout South Korea remain limited. We investigated the genetic and clonal diversity of M. spicatum using 30 newly developed microsatellite markers across 120 individuals from six freshwater systems in South Korea. Overall, 148 alleles were identified, with an average polymorphism information content value of 0.530. Clonal diversity differed among populations, with the genotypes to individuals (G/N) ratio ranging from 0.200 to 1.000. Bottlenecks and clonal dominance were observed in riverine populations. High genetic differentiation (mean FST = 0.556) indicated limited gene flow, and STRUCTURE analysis revealed six distinct genetic clusters. No significant correlation was found between genetic and geographic distance, suggesting possible seed dispersal by waterfowl, particularly between adjacent populations. Genetic structure was shaped by habitat type, disturbance intensity, and reproductive strategy. Stable reservoir habitats favored sexual reproduction and higher genetic diversity, whereas disturbed river systems showed clonal dominance and reduced variation. These findings provide essential genetic insights for conservation planning and sustainable management of aquatic plant resources. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

13 pages, 2462 KB  
Article
Population Genetics of Sillago japonica Among Five Populations Based on Mitochondrial Genome Sequences
by Beiyan Zhu, Tianxiang Gao, Yinquan Qu and Xiumei Zhang
Genes 2025, 16(8), 978; https://doi.org/10.3390/genes16080978 - 20 Aug 2025
Viewed by 341
Abstract
Objectives: Sillago japonica is a commercially important marine fish species in the Northwestern Pacific, and understanding its genetic diversity and population structure is crucial for germplasm resource conservation and elucidating population evolution mechanisms. This study specifically aimed to systematically explore the genetic diversity [...] Read more.
Objectives: Sillago japonica is a commercially important marine fish species in the Northwestern Pacific, and understanding its genetic diversity and population structure is crucial for germplasm resource conservation and elucidating population evolution mechanisms. This study specifically aimed to systematically explore the genetic diversity and population structure of S. japonica across five geographic regions (DJW, YSW, ST, ZS, and RS) in its distribution range. Methods: A total of 50 S. japonica individuals from the five geographic regions were analyzed using high-throughput mitochondrial genome sequencing data. We identified single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) loci, followed by comprehensive population genetic analyses including phylogenetic tree construction, principal component analysis (PCA), ADMIXTURE analysis, and calculation of genetic differentiation indices (Fst) and genetic diversity parameters. Results: A total of 2966 SNPs and 414 insertion-deletion loci were identified. Phylogenetic tree topology, PCA, and ADMIXTURE 1.3.0 analysis consistently showed low genetic differentiation among the five populations, a pattern supported by low pairwise Fst values ranging from 0.00047 to 0.05589, indicating extensive gene flow across regions. Genetic diversity parameters varied slightly among populations: observed heterozygosity (0.00001–0.00528), expected heterozygosity (0.04552–0.07311), percentages of polymorphic loci (19.41–30.36%), and nucleotide diversity (0.04792–0.07697). Conclusions: The low genetic differentiation and diversity observed in S. japonica populations may result from the combined effects of historical bottleneck-induced gene pool reduction and extensive gene flow. These findings provide essential theoretical support for formulating targeted conservation strategies for S. japonica germplasm resources and further studies on its population evolution mechanisms. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

13 pages, 2230 KB  
Article
Genetic Diversity Analysis of Sugar Beet Multigerm Germplasm Resources Based on SRAP Molecular Markers
by Yue Song, Jinghao Li, Shengnan Li, Zedong Wu and Zhi Pi
Horticulturae 2025, 11(8), 988; https://doi.org/10.3390/horticulturae11080988 - 20 Aug 2025
Viewed by 254
Abstract
This study utilized SRAP molecular markers to analyze the genetic basis of 106 multigerm sugar beet germplasm accessions. By revealing the genetic diversity, population structure, and differentiation patterns, it aimed to tap into the germplasm potential, guide core germplasm construction and hybrid combination [...] Read more.
This study utilized SRAP molecular markers to analyze the genetic basis of 106 multigerm sugar beet germplasm accessions. By revealing the genetic diversity, population structure, and differentiation patterns, it aimed to tap into the germplasm potential, guide core germplasm construction and hybrid combination optimization, and ultimately design a molecular breeding route to break through bottlenecks in sugar beet genetic breeding. In total, 24 core primer combinations were screened from 546 initial primer pairs for genomic DNA amplification. The results demonstrated that each primer combination amplified an average of five alleles. Genetic parameter calculations revealed moderate variation potential. Population structure analysis divided the germplasm into four genetic groups (G1–G4), highly consistent with cluster analysis and DAPC analysis results. Its reliability was jointly confirmed by STRUCTURE convergence verification (LnP(K) standard deviation) and cluster goodness-of-fit testing (r = 0.63166, p < 0.0001). Key findings indicated that Group G4 possesses a unique genetic background, and the maximum genetic distance exists between Group G1 and the other three groups, indicating its significant genetic differentiation characteristics. Gene exchange exists between the G3 and G4 populations. Genetic variation primarily originated from within populations (93%, FST = 0.1283). Genetic distances spanned from 0.385 (between accessions 66 and 71 within a group) to 0.836 (between accessions 47 and 85 across groups). Concurrently, gene flow analysis (Nm = 3.3977) indicated moderate genetic exchange among populations. This achievement established the first SRAP marker-based genetic architecture for multigerm sugar beet germplasm resources. It provides a quantitative population genetics basis for formulating targeted strategies for germplasm resource conservation and utilization, and lays the foundation for constructing an innovation system for sugar beet germplasm resources. Full article
(This article belongs to the Special Issue Genomics and Genetic Diversity in Vegetable Crops)
Show Figures

Figure 1

16 pages, 1281 KB  
Article
Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping
by Georgi Yordanov, Teodor Yordanov, Ivan Mehandjyiski, Georgi Radoslavov, Delka Salkova and Peter Hristov
Vet. Sci. 2025, 12(8), 776; https://doi.org/10.3390/vetsci12080776 - 19 Aug 2025
Viewed by 527
Abstract
The Shagya Arabian horse breed was created to address the need of Imperial Hussars (Hungarian light horsemen) for a horse with the intelligence, essential characteristics, and endurance of the Arabian breed, but also of a bigger size and having a better weight-carrying capacity [...] Read more.
The Shagya Arabian horse breed was created to address the need of Imperial Hussars (Hungarian light horsemen) for a horse with the intelligence, essential characteristics, and endurance of the Arabian breed, but also of a bigger size and having a better weight-carrying capacity and jumping ability. The present study aimed to explore the genetic variability and population structure of the uninvestigated Shagya Arabian horse population in Bulgaria based on genotyping at 15 equine microsatellite markers. A total of 140 horses belonging to six genealogical lines (Dahoman, Gazal, Ibrahim, Kuhailan Zaid, O’Bajan, and Shagya) were included in the survey. Genetic distances, analysis of molecular variance, principal coordinates analysis, and a Bayesian method were applied. The mean number of alleles in the individual subpopulations ranged from 3.67 in the Shagya to 5.13 in the Ibrahim sire line. The FIS index was negative or close to 0 for the entire population and was −0.202. The overall FST was 0.014, indicating a low level of genetic differentiation between the subpopulations. The results of the principal components and the STRUCTURE analysis showed some level of admixture among the subpopulations in almost all genealogical lines. However, structural analysis also indicated a genetic similarity between the Ibrahim, Kuhailan Zaid, and Shagya lineages, while it showed a completely different genetic profile regarding the other three sire lines. Due to the higher admixture and the discovery of more distinct genetic clusters, it can be assumed that there is a higher gene flow from one lineage to another in the Shagya Arabian horse population in Bulgaria and that there is sufficient genetic variability and diversity to suggest adequate measures for preserving this rare breed. In addition, this study may highlight the risk of the loss of gene diversity in this population and help to implement suitable breeding programs to preserve genetic diversity. Full article
Show Figures

Figure 1

16 pages, 735 KB  
Article
Genetic Diversity and Population Structure of Nine Local Sheep Populations Bred in the Carpathia Area of Central Europe Revealed by Microsatellite Analysis
by Zuzana Sztankoová, Michal Milerski, Luboš Vostrý and Jana Rychtářová
Animals 2025, 15(16), 2400; https://doi.org/10.3390/ani15162400 - 15 Aug 2025
Viewed by 235
Abstract
A necessary step towards the development of genetic diversity is the protection of the valuable genetic resources of farm animals that are at risk of extinction. We analyzed 375 individuals of nine local sheep breeds bred in Central Europe (Carpathia area) from Czech [...] Read more.
A necessary step towards the development of genetic diversity is the protection of the valuable genetic resources of farm animals that are at risk of extinction. We analyzed 375 individuals of nine local sheep breeds bred in Central Europe (Carpathia area) from Czech Republic, Slovakia, Poland, Ukraine, and Romania using a panel of 13 microsatellite markers to investigate genetic differences and evaluate the genetic structure among and within breeds, thereby improving future breeding and conservation strategies. The mean number of alleles was 8.84, the mean number of effective alleles was 4.76, and the polymorphism information content (PIC) was 0.79. Diversity was measured using principal coordinate analysis (PCoA) as well as genetic structure, which revealed two main clusters. The first cluster was the Czech Wallachian sheep (CVA) and the Świniarka (SWI). The second cluster consisted the Improved Wallachian sheep (IVA), the Šumava sheep (SUM), the Slovak Wallachian sheep (SVA), the Polish Mountain sheep (POG), the Uhruska sheep (UHR), the Ukrainian sheep (UKR) and the Tsurcana sheep (TUR). The values of genetic distance and the fixation coefficient indicate sufficient differences between the analyzed breeds (Gst = 0.052 and Fst = 0.063). Negative values of the inbreeding coefficient also confirmed the predominance of outbreeding (Fis = −0.015). The results obtained may be helpful in breeding programs and conservation plans for local sheep breeds, as their genetic resources must be preserved to maintain an adequate level of biodiversity in animal husbandry. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

18 pages, 1575 KB  
Article
Redesigning Food Handler Training: A Gamified Approach Tested in Italy’s Large-Scale Retail
by Martina Sartoni, Francesca Marconi, Beatrice Torracca, Francesca Pedonese, Roberta Nuvoloni and Alessandra Guidi
Foods 2025, 14(16), 2803; https://doi.org/10.3390/foods14162803 - 13 Aug 2025
Viewed by 465
Abstract
Foodborne diseases remain a major global health issue, with over 250 illnesses linked to contaminated food. Effective food safety management relies on well-trained handlers; however, traditional classroom-based, passive learning often lacks engagement and efficacy, limiting awareness and hindering the development of a strong [...] Read more.
Foodborne diseases remain a major global health issue, with over 250 illnesses linked to contaminated food. Effective food safety management relies on well-trained handlers; however, traditional classroom-based, passive learning often lacks engagement and efficacy, limiting awareness and hindering the development of a strong food safety culture. Gamification offers a promising alternative for vocational training, enhancing motivation and engagement through interactive, emotionally engaging learning experiences. This study aims to evaluate the user’s perception of a gamification-based training system (Food Safety Trainer, FST web app) developed and implemented for the training of food handlers in a large-scale retail company in Tuscany, Italy. A total of 249 employees completed a survey after using FST web app for their annual training. Seniority was used as the primary variable to assess differences among respondents. Although some slight variations in opinion emerged, the results indicate that the web app was generally more appreciated than traditional learning. Gamification demonstrated great potential as a tool for enhancing engagement, promoting team building, and supporting the development of a food safety culture. Future studies could extend the evaluation beyond user perception by assessing the system’s effectiveness, comparing outcomes and performance through specific indicators. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

18 pages, 4153 KB  
Article
Whole-Genome Resequencing Analysis of Athletic Traits in Grassland-Thoroughbred
by Wenqi Ding, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin and Dongyi Bai
Animals 2025, 15(15), 2323; https://doi.org/10.3390/ani15152323 - 7 Aug 2025
Viewed by 310
Abstract
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses [...] Read more.
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses and Xilingol horses for this study. This breed is tentatively named “Grassland-Thoroughbred”, and the samples were divided into two groups based on racing ability: 30 racehorses and 30 non-racehorses. Based on whole-genome sequencing data, the study achieved an average sequencing depth of 25.63×. The analysis revealed strong selection pressure on chromosomes (Chr) 1 and 3. Selection signals were detected using methods such as the nucleotide diversity ratio (π ratio), integrated haplotype score (iHS), fixation index (Fst), and cross-population extended haplotype homozygosity (XP-EHH). Regions ranked in the top 5% by at least three methods were designated as candidate regions. This approach detected 215 candidate genes. Additionally, the Fst method was employed to detect Indels, and the top 1% regions detected were considered candidate regions, covering 661 candidate genes. Functional enrichment analysis of the candidate genes suggests that pathways related to immune regulation, neural signal transmission, muscle contraction, and energy metabolism may significantly influence differences in performance. Among these identified genes, PPARGC1A, FOXO1, SGCD, FOXP2, PRKG1, SLC25A15, CKMT2, and TRAP1 play crucial roles in muscle function, metabolism, sensory perception, and neurobiology, indicating their key significance in shaping racehorse phenotypes. This study not only enhances understanding of the molecular mechanisms underlying racehorse speed but also provides essential theoretical and practical references for the molecular breeding of Grassland-Thoroughbreds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

15 pages, 662 KB  
Article
Genetic Structuring and Connectivity of European Squid Populations in the Mediterranean Sea Based on Mitochondrial COI Data
by Vasiliki Pertesi, Joanne Sarantopoulou, Athanasios Exadactylos, Dimitrios Vafidis and Georgios A. Gkafas
Fishes 2025, 10(8), 394; https://doi.org/10.3390/fishes10080394 - 7 Aug 2025
Viewed by 1274
Abstract
Understanding population connectivity and genetic structure is crucial for the effective management of exploited marine species. This study investigates the population genetics of the common European squid (Loligo vulgaris) across the Mediterranean Sea, focusing on samples from the Aegean Sea and [...] Read more.
Understanding population connectivity and genetic structure is crucial for the effective management of exploited marine species. This study investigates the population genetics of the common European squid (Loligo vulgaris) across the Mediterranean Sea, focusing on samples from the Aegean Sea and comparative sequences from Western Mediterranean, Eastern Mediterranean, and Atlantic coasts. A total of 67 COI mitochondrial sequences were analyzed, identifying 12 haplotypes and 27 polymorphic sites. Population-level genetic diversity, pairwise FST values, and haplotype network analyses revealed pronounced genetic differentiation in the eastern Mediterranean contrasting with the genetic homogeneity observed among Western populations. The low haplotype diversity observed in the Greek populations of L. vulgaris may be influenced by a combination of ecological and historical factors, as the Aegean region is recognized as a hotspot of endemism and historical population fragmentation. The results indicate the existence of at least two genetically differentiated clusters within the Mediterranean basin. This study advances current knowledge of the genetic structure of Loligo vulgaris by providing novel genetic data on populations from the eastern Mediterranean, offering valuable insights for future conservation and management strategies for the species. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

15 pages, 7392 KB  
Article
Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China
by Fuli Wang, Chengzhong Yang, Yalin Xiong, Qian Xiang, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(15), 2254; https://doi.org/10.3390/ani15152254 - 31 Jul 2025
Viewed by 283
Abstract
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively [...] Read more.
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively evaluate the genetic diversity, population structure, gene flow, and demographic history of tufted deer across this critical region. We analyzed mitochondrial DNA (mtDNA) from 46 non-invasively collected fecal samples from three distinct populations: Jinfo Mountain (JF, n = 13), Simian Mountain (SM, n = 21), and the Northeastern Mountainous region (NEM, n = 12). Genetic variation was assessed using the cytochrome b (Cyt b) and D-loop regions, with analyses including Fst, gene flow (Nm), neutrality tests, and Bayesian Skyline Plots (BSP). Our results revealed the highest genetic diversity in the SM population, establishing it as a genetic hub. In contrast, the JF population exhibited the lowest diversity and significant genetic differentiation (>0.23) from the SM and NEM populations, indicating profound isolation. Gene flow was substantial between SM and NEM but severely restricted for the JF population. Demographic analyses, including BSP, indicated a long history of demographic stability followed by a significant expansion beginning in the Middle to Late Pleistocene. We conclude that the SM/NEM metapopulation serves as the genetic core for the species in this region, while the highly isolated JF population constitutes a distinct and vulnerable Management Unit (MU). This historical demographic expansion is likely linked to climatic and environmental changes during the Pleistocene, rather than recent anthropogenic factors. These findings underscore the urgent need for a dual conservation strategy: targeted management for the isolated JF population and the establishment of ecological corridors to connect the Jinfo Mountain and Simian Mountain populations, ensuring the long-term persistence of this unique species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3339 KB  
Article
Accurate Identification of Native Asian Honey Bee Populations in Jilong (Xizang, China) by Population Genomics and Deep Learning
by Zhiyu Liu, Yongqiang Xu, Wei Sun, Bing Yang, Tenzin Nyima, Zhuoma Pubu, Xin Zhou, Wa Da and Shiqi Luo
Insects 2025, 16(8), 788; https://doi.org/10.3390/insects16080788 - 31 Jul 2025
Viewed by 467
Abstract
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate [...] Read more.
The Jilong Valley, situated in Rikaze, Xizang, China, is characterized by its complex topography and variable climatic conditions, providing a suitable habitat for Apis cerana Fabricius, 1793. To facilitate the conservation of germplasm resources and maintain genetic diversity, it is imperative to elucidate the population structure and lineage differentiation of A. cerana within this ecologically distinct region. In this study, we collected A. cerana specimens from 12 geographically disparate locations across various altitudinal gradients within the Jilong Valley, and also integrated publicly available sequencing data of A. cerana from various regions across mainland Asia. In total, our analysis encompassed sequencing data from 296 individuals. Population structure analyses based on SNP data revealed that A. cerana in Jilong represents a genetically distinct population that differs markedly from other regional A. cerana populations in terms of genetic lineage, although its subspecies identity remains to be confirmed. Through screening based on FST values, we identified SNP loci that contribute significantly to distinguishing between Jilong and non-Jilong A. cerana. Using these loci, the convolutional neural network model TraceNet was trained, which demonstrated specific recognition capabilities for Jilong versus non-Jilong A. cerana. This further confirmed the universality and efficiency of TraceNet in identifying honey bee lineages. These findings contribute valuable insights for the identification and conservation of A. cerana germplasm resources in specific geographical regions. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

26 pages, 11108 KB  
Article
Warming in the Maternal Environment Alters Seed Performance and Genetic Diversity of Stylosanthes capitata, a Tropical Legume Forage
by Priscila Marlys Sá Rivas, Fernando Bonifácio-Anacleto, Ivan Schuster, Carlos Alberto Martinez and Ana Lilia Alzate-Marin
Genes 2025, 16(8), 913; https://doi.org/10.3390/genes16080913 - 30 Jul 2025
Viewed by 582
Abstract
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to [...] Read more.
Background/Objectives: Global warming and rising CO2 concentrations pose significant challenges to plant systems. Amid these pressures, this study contributes to understanding how tropical species respond by simultaneously evaluating reproductive and genetic traits. It specifically investigates the effects of maternal exposure to warming and elevated CO2 on progeny physiology, genetic diversity, and population structure in Stylosanthes capitata, a resilient forage legume native to Brazil. Methods: Maternal plants were cultivated under controlled treatments, including ambient conditions (control), elevated CO2 at 600 ppm (eCO2), elevated temperature at +2 °C (eTE), and their combined exposure (eTEeCO2), within a Trop-T-FACE field facility (Temperature Free-Air Controlled Enhancement and Free-Air Carbon Dioxide Enrichment). Seed traits (seeds per inflorescence, hundred-seed mass, abortion, non-viable seeds, coat color, germination at 32, 40, 71 weeks) and abnormal seedling rates were quantified. Genetic diversity metrics included the average (A) and effective (Ae) number of alleles, observed (Ho) and expected (He) heterozygosity, and inbreeding coefficient (Fis). Population structure was assessed using Principal Coordinates Analysis (PCoA), Analysis of Molecular Variance (AMOVA), number of migrants per generation (Nm), and genetic differentiation index (Fst). Two- and three-way Analysis of Variance (ANOVA) were used to evaluate factor effects. Results: Compared to control conditions, warming increased seeds per inflorescence (+46%), reduced abortion (−42.9%), non-viable seeds (−57%), and altered coat color. The germination speed index (GSI +23.5%) and germination rate (Gr +11%) improved with warming; combined treatments decreased germination time (GT −9.6%). Storage preserved germination traits, with warming enhancing performance over time and reducing abnormal seedlings (−54.5%). Conversely, elevated CO2 shortened GSI in late stages, impairing germination efficiency. Warming reduced Ae (−35%), He (−20%), and raised Fis (maternal 0.50, progeny 0.58), consistent with the species’ mixed mating system; A and Ho were unaffected. Allele frequency shifts suggested selective pressure under eTE. Warming induced slight structure in PCoA, and AMOVA detected 1% (maternal) and 9% (progeny) variation. Fst = 0.06 and Nm = 3.8 imply environmental influence without isolation. Conclusions: Warming significantly shapes seed quality, reproductive success, and genetic diversity in S. capitata. Improved reproduction and germination suggest adaptive advantages, but higher inbreeding and reduced diversity may constrain long-term resilience. The findings underscore the need for genetic monitoring and broader genetic bases in cultivars confronting environmental stressors. Full article
(This article belongs to the Special Issue Genetics and Breeding of Forage)
Show Figures

Graphical abstract

15 pages, 1009 KB  
Article
Thermoregulatory and Behavioral Responses of Pullets Subjected to High Temperatures and Supplemented with Vitamin D3 and Different Limestone Particle Sizes
by Angélica Maria Angelim, Silvana Cavalcante Bastos Leite, Angela Maria de Vasconcelos, Angefferson Bento Evangelista, Carla Lourena Cardoso Macedo Lourenço, Maria Rogervânia Silva de Farias, Cláudia Goulart de Abreu and Robson Mateus Freitas Silveira
Poultry 2025, 4(3), 33; https://doi.org/10.3390/poultry4030033 - 29 Jul 2025
Viewed by 306
Abstract
The objective of this study was to evaluate the effect of two limestone granulometries (0.568 and 1.943 mm) and different levels of vitamin D3 (12.5 g and 25 g) on the thermoregulatory and behavioral responses of replacement pullets. Lohman brown lineage pullets (270 [...] Read more.
The objective of this study was to evaluate the effect of two limestone granulometries (0.568 and 1.943 mm) and different levels of vitamin D3 (12.5 g and 25 g) on the thermoregulatory and behavioral responses of replacement pullets. Lohman brown lineage pullets (270 birds), with an average weight of 639.60 g ± 6.05 and an initial age of eight weeks, were used in this study. The experimental design adopted was completely randomized in a 2 × 2 × 2 + 1 factorial arrangement (2 limestone granulometries × 2 levels of vitamin D3 × 2 shifts). The respiratory rate (RR), cloaca temperature (CT), feather surface temperature (FST) and featherless surface temperature (FLST) were higher in the afternoon (p < 0.05), while the thermal gradient (TG) was higher in the morning (p < 0.05). Birds supplemented with different limestone granulometries and different levels of vitamin D3 showed similar thermoregulatory and behavioral responses. The “eating” activity was more frequent in the morning, while in the afternoon, the birds remained seated for longer (p < 0.05). The dietary supplementation with different limestone granulometries and vitamin levels did not impair thermoregulation even at higher temperatures. Regardless of the level of vitamin D3, they showed a better expression of welfare-related behavioral activities in the morning in the semiarid region. Full article
Show Figures

Figure 1

Back to TopTop