Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,986)

Search Parameters:
Keywords = FeS/C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4514 KB  
Article
LATP-Enhanced Polymer Electrolyte for an Integrated Solid-State Battery
by Xianzheng Liu, Nashrah Hani Jamadon, Liancheng Zheng, Rongji Tang and Xiangjun Ren
Polymers 2025, 17(19), 2673; https://doi.org/10.3390/polym17192673 - 2 Oct 2025
Abstract
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti [...] Read more.
Traditional liquid electrolyte batteries face safety concerns such as leakage and flammability, while further optimization has reached a bottleneck. Solid electrolytes are therefore considered a promising solution. Here, a PEO–LiTFSI–LATP (PELT) composite electrolyte was developed by incorporating nanosized Li1.3Al0.3Ti1.7(PO4)3 fillers into a polyethylene oxide matrix, effectively reducing crystallinity, enhancing mechanical robustness, and providing additional Li+ transport channels. The PELT electrolyte exhibited an electrochemical stability window of 4.9 V, an ionic conductivity of 1.2 × 10−4 S·cm−1 at 60 °C, and a Li+ transference number (tLi+) of 0.46, supporting stable Li plating/stripping for over 600 h in symmetric batteries. More importantly, to address poor electrode–electrolyte contact in conventional layered cells, we proposed an integrated electrode–electrolyte architecture by in situ coating the PELT precursor directly onto LiFePO4 cathodes. This design minimized interfacial impedance, improved ion transport, and enhanced electrochemical stability. The integrated PELT/LFP battery retained 74% of its capacity after 200 cycles at 1 A·g−1 and showed superior rate capability compared with sandwich-type batteries. These results highlight that coupling LATP-enhanced polymer electrolytes with an integrated architecture is a promising pathway toward high-safety, high-performance solid-state lithium-ion batteries. Full article
Show Figures

Figure 1

22 pages, 5706 KB  
Article
Impact of Annealing Treatment on the Potential Stability of SUS316L and Its Possibility for Realizing a Quasi-Reference Electrode
by Kyosuke Sawada, Shinji Okazaki, Tatsuki Inaba and Motohiro Sakuma
Chemosensors 2025, 13(10), 356; https://doi.org/10.3390/chemosensors13100356 - 1 Oct 2025
Abstract
This work demonstrates the use of SUS316L stainless steel as a new material for the fabrication of quasi-reference electrodes (QREs) intended to replace conventional reference electrodes (REs) in electrochemical sensors. The present study examined the potentials generated by SUS316L specimens annealed in air [...] Read more.
This work demonstrates the use of SUS316L stainless steel as a new material for the fabrication of quasi-reference electrodes (QREs) intended to replace conventional reference electrodes (REs) in electrochemical sensors. The present study examined the potentials generated by SUS316L specimens annealed in air at 400 °C and above for 1 h or more. Annealing above 500 °C increased the proportion of Cr in surface oxide films, hence reducing the stability of the potential. Samples annealed at 400 °C for 5 h produced the most stable electrode potential, which was attributed to a higher concentration of Fe in the oxide layer. The potential of such specimens increased by only 28.3 mV between test durations of 24 and 168 h, and potential data acquired at 30 s intervals had a standard deviation of less than 2 µV. Applying a surface treatment prior to immersion in the simulated tap water evidently stabilized the electrode potential, as a consequence of the formation of an inner oxide layer together with an outer layer consisting primarily of iron oxides. Full article
Show Figures

Figure 1

25 pages, 6876 KB  
Article
Sustainable Synthesis of CoFe2O4/Fe2O3 Catalyst for Hydrogen Generation from Sodium Borohydride Hydrolysis
by Lucas Tonetti Teixeira, Marcos Medeiros, Liying Liu, Vinicius Novaes Park, Célio Valente-Rodriguez, Sonia Letichevsky, Humberto Vieira Fajardo, Rogério Navarro Correia de Siqueira, Marcelo Eduardo Huguenin Maia da Costa and Amilton Barbosa Botelho Junior
Catalysts 2025, 15(10), 943; https://doi.org/10.3390/catal15100943 - 1 Oct 2025
Abstract
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the [...] Read more.
Hydrogen has been explored as a greener alternative for greenhouse gas emissions reduction. Sodium borohydride (NaBH4) is a favorable hydrogen carrier due to its high hydrogen content, safe handling, and rapid hydrogen release. This work presents a novel synthesis of the catalyst CoFe2O4/Fe2O3 using nanocellulose fibers (TCNF) as reactive templates for metal adsorption and subsequent calcination. The resulting material was tested for H2 production from basic NaBH4 aqueous solutions (10–55 °C). The catalyst’s composition is 74.8 wt% CoFe2O4, 25 wt% Fe2O3, and 0.2 wt% Fe2(SO4)3 with agglomerated spheroidal particles (15–20 nm) and homogeneous Fe and Co distribution. The catalyst produced 1785 mL of H2 in 15 min at 25 °C (50 mg catalyst, 4.0% NaBH4, and 2.5 wt% NaOH), close to the stoichiometric maximum (2086 mL). The maximum H2 generation rate (HGR) reached 3.55 L min−1 gcat−1 at 40 °C. Activation energies were determined using empirical (38.4 ± 5.3 kJ mol−1) and Langmuir–Hinshelwood (L–H) models (42.2 ± 5.8 kJ mol−1), consistent with values for other Co-ferrite catalysts. Kinetic data fitted better to the L–H model, suggesting that boron complex adsorption precedes H2 evolution. Full article
Show Figures

Graphical abstract

29 pages, 8509 KB  
Article
The Influence of Mg on the High-Temperature Chloride Salt Corrosion Behavior of High-Aluminum 310S
by Ying Wei, Peiqing La, Yuehong Zheng, Faqi Zhan, Min Zhu, Penghui Yang, Haicun Yu and Ruixin Li
Crystals 2025, 15(10), 860; https://doi.org/10.3390/cryst15100860 - 30 Sep 2025
Abstract
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged [...] Read more.
Concentrated Solar Power (CSP) technology is advancing toward higher operating temperatures and lower costs: current systems operate at 565 °C, while next-generation systems are targeted to reach 800 °C to overcome efficiency limitations. In this context, low-cost, adaptable molten chloride salts have emerged as ideal heat transfer and thermal energy storage media. Metallic materials are susceptible to performance degradation under such conditions, which not only shortens equipment service life but also entails potential safety hazards. Thus, the development of alloy protection technologies resistant to molten salt corrosion has become an urgent priority for the deployment of next-generation CSP plants. Research has indicated that high-aluminum stainless steel is a promising candidate due to its unique advantages: it can form a stable Al2O3 protective film in oxygen-containing anionic environments, effectively inhibiting the dissolution of Cr, Fe, and other elements, and preventing the penetration of corrosive species. Additionally, the incorporation of magnesium-based corrosion inhibitors into MgCl2-NaCl-KCl ternary molten salt systems has been proven to be an economically viable and efficient corrosion mitigation strategy. This study focused on high-aluminum 310S heat-resistant steel, with its performance validated through targeted experiments: samples subjected to pre-oxidation at 800 °C for 2 h were immersed in a specific ternary molten salt mixture (20.4 wt.% KCl, 55.1 wt.% MgCl2, 24.5 wt.% NaCl) containing magnesium corrosion inhibitors, followed by a 600 h static corrosion test at 800 °C. The results revealed that the addition of magnesium significantly enhanced the corrosion resistance of high-aluminum 310S. These findings demonstrate that this material holds application potential in the storage tank and pipeline systems of next-generation CSP plants. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
13 pages, 3728 KB  
Article
Al and Cu Effect on the Microstructure and Mechanical Properties of HEA Based on the AlCoCuFeNi System
by Konrad Chrzan, Barbara Kalandyk, Małgorzata Grudzień-Rakoczy, Łukasz Rakoczy, Kamil Cichocki, Robert Żuczek, Filip Kateusz, Aleksandra Bętkowska, Adelajda Polkowska and Justyna Kasińska
Materials 2025, 18(19), 4564; https://doi.org/10.3390/ma18194564 - 30 Sep 2025
Abstract
Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations [...] Read more.
Three variants of high-entropy alloys (HEAs) from the AlCoCuFeNi group, containing different amounts of Al and Cu, were developed and produced via induction melting and casting into ceramic moulds. The ingots were homogenized at 1000 °C for 10 h. Analyses revealed that variations in Al and Cu concentrations led to significant changes in the material’s microstructure, hardness, strength, and impact strength. In the equiatomic variant, differential scanning calorimetry revealed a peak associated with the phase transformation, indicating that this alloy’s microstructure consists of two distinct phases. In contrast, when the concentrations of Al and Cu are reduced, a single-phase microstructure is observed. The equiatomic variant (used as a reference) is characterized by its hardness and brittleness, exhibiting slight ductility, with a tensile strength of 80 MPa, a hardness of 400 HV5, and an impact strength of 1.9 J/cm2. However, with adjusted Al contents of 1/2 and Cu contents of 1/4, the alloy displays exceptional strength combined with good plasticity, achieving a tensile strength of up to 450 MPa with 60% elongation, and an impact strength of 215 J/cm2. The non-equiatomic variants exhibit a comparatively more straightforward microstructure and enhanced ductility, which may facilitate easier processing of these alloys. Fractography investigation revealed a ductile mode of fracture in the samples. Full article
Show Figures

Figure 1

15 pages, 1039 KB  
Article
Synthesis and Ionic Conductivity of NASICON-Type Li1+XFeXTi2-X(PO4)3(x = 0.1, 0.3, 0.4) Solid Electrolytes Using the Sol–Gel Method
by Seong-Jin Cho and Jeong-Hwan Song
Crystals 2025, 15(10), 856; https://doi.org/10.3390/cryst15100856 - 30 Sep 2025
Abstract
NASICON-type Li1+XFeXTi2-X(PO4)3 (x = 0.1, 0.3, 0.4) solid electrolytes for all-solid-state Li-ion batteries were synthesized using a sol–gel method. This study investigated the impact of substituting Fe3+ (0.645 Å), a trivalent cation, for [...] Read more.
NASICON-type Li1+XFeXTi2-X(PO4)3 (x = 0.1, 0.3, 0.4) solid electrolytes for all-solid-state Li-ion batteries were synthesized using a sol–gel method. This study investigated the impact of substituting Fe3+ (0.645 Å), a trivalent cation, for Ti4+ (0.605 Å) on ionic conductivity. Li1+XFeXTi2-X(PO4)3 samples, subjected to various sintering temperatures, were characterized using TG-DTA, XRD with Rietveld refinement, XPS, FE-SEM, and AC impedance to evaluate composition, crystal structure, fracture surface morphology, densification, and ionic conductivity. XRD analysis confirmed the formation of single-crystalline NASICON-type Li1+XFeXTi2-X(PO4)3 at all sintering temperatures. However, impurities in the secondary phase emerged owing to the high sintering temperature, above 1000 °C, and increased Fe content. Sintered density increased with the densification of Li1+XFeXTi2-X(PO4)3, as evidenced by FE-SEM observations of sharper edges of larger quasi-cubic grains at elevated sintering temperatures. At 1000 °C, with Fe content exceeding 0.4, grain coarsening resulted in additional grain boundaries and internal cracks, thereby reducing the sintered density. Li1.3Fe0.3Ti1.7(PO4)3 sintered at 900 °C exhibited the highest density among the other conditions and achieved the maximum total ionic conductivity of 1.51 × 10−4 S/cm at room temperature, with the lowest activation energy for Li ion transport at 0.37 eV. In contrast, Li1.4Fe0.4Ti1.6(PO4)3 sintered at 1000 °C demonstrated reduced ionic conductivity owing to increased complex impedance associated with secondary phases and grain crack formation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
24 pages, 2535 KB  
Article
Obtaining of Composite Cements with Addition of Fly Ash
by Galiya Rakhimova, Gulim Syndarbekova, Nurgali Zhanikulov, Bakytkul Yerkebayeva, Ekaterina Potapova and Murat Rakhimov
Buildings 2025, 15(19), 3523; https://doi.org/10.3390/buildings15193523 - 30 Sep 2025
Abstract
The potential for creating composite cements by incorporating fly ash is demonstrated. Analysis revealed that the fly ash examined consists of 69.66 wt. % silicon oxide, 21.34 wt. % aluminum oxide, 1.57 wt. % calcium oxide and 2.78 wt. % iron oxide. Fly [...] Read more.
The potential for creating composite cements by incorporating fly ash is demonstrated. Analysis revealed that the fly ash examined consists of 69.66 wt. % silicon oxide, 21.34 wt. % aluminum oxide, 1.57 wt. % calcium oxide and 2.78 wt. % iron oxide. Fly ash mainly consists of quartz (SiO2), goethite (FeO(OH)) and mullite (3Al2O3·2SiO2). The properties of the cement composition containing 5 to 25 wt. % fly ash were studied. Incorporating fly ash enhances system dispersion, promotes mixture uniformity, and stimulates the pozzolanic reaction. Compositions of composite cements consisting of 90% CEM I 42.5 and 10% fly ash were developed. The cement stone based on the obtained composite cement had a compacted structure with a density of 2.160 g/cm3, which is 9.4% higher than the control sample. It is shown that when composite cement containing 10% fly ash interacts with water, hydration reactions of cement minerals (C3S, C2S, C3A and C4AF) begin first. This is accompanied by the formation of hydrate neoplasms, such as calcium hydroxide (Ca(OH)2) and calcium hydrosilicates (C-S-H). Fly ash particles containing amorphous silica progressively participate in a pozzolanic reaction with Ca(OH)2, leading to the formation of additional calcium hydrosilicates phases. This process enhances structural densification and reduces the porosity of the cement matrix. After 28 days of curing, the compressive strength of the resulting composite cements ranged from 42.1 to 54.2 MPa, aligning with the strength classes 32.5 and 42.5 as specified by GOST 31108-2020. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
15 pages, 3314 KB  
Article
Tunable Bandgap in Cobalt-Doped FeS2 Thin Films for Enhanced Solar Cell Performance
by Eder Cedeño Morales, Yolanda Peña Méndez, Sergio A. Gamboa-Sánchez, Boris Ildusovich Kharissov, Tomás C. Hernández García and Marco A. Garza-Navarro
Materials 2025, 18(19), 4546; https://doi.org/10.3390/ma18194546 - 30 Sep 2025
Abstract
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, [...] Read more.
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, and achieving structural stabilization of the film. After annealing, the dendritic morphologies transformed into compact quasi-spherical nanoparticles (~100 nm), which enhanced the crystallinity and optoelectronic performance of the films. The films exhibited strong absorption (>50%) in the visible and near-infrared regions and tunable direct bandgaps (1.14 to 0.96 eV, within the optimal range for single-junction solar cells. Electrical characterization revealed a fourth-order increase in conductivity after annealing (up to 4.78 Ω−1 cm−1) and confirmed stable p-type behavior associated with Co2+-induced acceptor states and defect passivation. These results demonstrate that CBD enabled the fabrication of Co-doped FeS2 thin films with synergistic structural, electrical, and optical properties. The integration of earth-abundant elements and tunable electronic properties makes these films promising absorber materials for the next-generation photovoltaic devices. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

35 pages, 5230 KB  
Article
Electrochemical Performances of Li-Ion Batteries Based on LiFePO4 Cathodes Supported by Bio-Sourced Activated Carbon from Millet Cob (MC) and Water Hyacinth (WH)
by Wend-Waoga Anthelme Zemane and Oumarou Savadogo
Batteries 2025, 11(10), 361; https://doi.org/10.3390/batteries11100361 - 30 Sep 2025
Abstract
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH [...] Read more.
The electrochemical performance of Li-ion batteries employing LiFePO4 (LFP) cathodes supported by bio-sourced activated carbon derived from millet cob (MC) and water hyacinth (WH) were systematically investigated. Carbon activation was carried out using potassium hydroxide (KOH) at varying mass ratios of KOH to precursor material: 1:1, 2:1, and 5:1 for both WH and MC-derived carbon. The physical properties (X-ray diffraction patterns, BET surface area, micropore and mesopore volume, conductivity, etc.) and electrochemical performance (specific capacity, discharge at various current rates, electrochemical impedance measurement, etc.) were determined. Material characterization revealed that the activated carbon derived from MC exhibits an amorphous structure, whereas that obtained from WH is predominantly crystalline. High specific surface areas were achieved with activated carbons synthesized using a low KOH-to-carbon mass ratio (1:1), reaching 413.03 m2·g−1 for WH and 216.34 m2·g−1 for MC. However, larger average pore diameters were observed at higher activation ratios (5:1), measuring 8.38 nm for KOH/WH and 5.28 nm for KOH/MC. For both biomass-derived carbons, optimal electrical conductivity was obtained at a 2:1 activation ratio, with values of 14.7 × 10−3 S·cm−1 for KOH/WH and 8.42 × 10−3 S·cm−1 for KOH/MC. The electrochemical performance of coin cells based on cathodes composed of 85% LiFePO4, 8% of these activated carbons, and 7% polyvinylidene fluoride (PVDF) as a binder, with lithium metal as the anode were studied. The LiFePO4/C (LFP/C) cathodes exhibited specific capacities of up to 160 mAh·g−1 at a current rate of C/12 and 110 mAh·g−1 at 5C. Both LFP/MC and LFP/WH cathodes exhibit optimal energy density at specific values of pore size, pore volume, charge transfer resistance (Rct), and diffusion coefficient (DLi), reflecting a favorable balance between ionic transport, accessible surface area, and charge conduction. Maximum energy densities relative to active mass were recorded at 544 mWh·g−1 for LFP/MC 2:1, 554 mWh·g−1 for LFP/WH 2:1, and 568 mWh·g−1 for the reference LFP/graphite system. These performance results demonstrate that the development of high-performing bio-sourced activated carbon depends on the optimization of various parameters, including chemical composition, specific surface area, pore volume and size distribution, as well as electrical conductivity. Full article
Show Figures

Figure 1

19 pages, 12715 KB  
Article
Study on the Corrosion Behavior of Additively Manufactured NiCoCrFeyMox High-Entropy Alloys in Chloride Environments
by Chaoqun Xie, Yaqing Hou, Youpeng Song, Zhishan Mi, Fafa Li, Wei Guo and Dupeng He
Materials 2025, 18(19), 4544; https://doi.org/10.3390/ma18194544 - 30 Sep 2025
Abstract
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, [...] Read more.
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, 0.15). The corrosion behavior of these alloys was investigated in 3.5 wt.% NaCl solution at room temperature and 60 °C using electrochemical testing and X-ray photoelectron spectroscopy (XPS). The results show that all alloys exhibit good corrosion resistance at room temperature. However, at 60 °C, both alloys without Mo addition exhibit severe corrosion, while the Fe0.5CoCrNiMo0.1 alloy demonstrates the best corrosion resistance while maintaining the highest strength. The enhanced corrosion resistance is attributed to the optimal molybdenum addition, which refines the passive film structure and promotes the formation of Cr2O3. Furthermore, molybdenum oxide exists as MoO42− ions on the surface of the passive film, significantly improving the alloy’s corrosion resistance in chloride-containing environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 57255 KB  
Article
Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
by Jun Xiao, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei and Aimin Zhao
Metals 2025, 15(10), 1091; https://doi.org/10.3390/met15101091 - 29 Sep 2025
Abstract
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with [...] Read more.
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with comparisons made with 304 stainless steel. The effects of an Al addition and cooling rate were also explored. The results show that the solidification sequence of 310S stainless steel is L → L + γ → L + γ + δ → δ + γ, in which austenite nucleates early and grows rapidly, followed by the precipitation of a small amount of δ-ferrite in the later stages of solidification. In contrast, 304 stainless steel solidifies according to L → L + δ → L + δ + γ → δ + γ, with a rapid δ → γ transformation occurring after solidification. Compared with 304, 310S stainless steel exhibits a reduced ferrite fraction and a significantly increased σ phase content. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), while M23C6 preferentially forms at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides fast diffusion pathways for Cr but also nucleation sites. The solidification segregation sequence in 310S stainless steel is Cr > Ni > Fe, with Cr and Ni showing positive segregation and Fe showing negative segregation. The addition of Al does not alter the solidification mode of 310S stainless steel but refines austenite grains, reduces interdendritic solute enrichment, decreases segregation, lowers both the size and fraction of ferrite, and suppresses the precipitation of σ and M23C6 phases. This effect is mainly attributed to the reduction of δ/γ interfaces, which weakens the preferred nucleation sites for M23C6. Increasing the cooling rate enhances non-equilibrium solute segregation, promotes ferrite formation, inhibits the δ → γ transformation, and ultimately retains more ferrite; the intensified segregation further accelerates the δ → σ transformation. Full article
Show Figures

Graphical abstract

15 pages, 9756 KB  
Article
Interaction of Oxygen Molecules with Fe Atom-Doped γ-Graphyne Surfaces: First-Principles Calculations
by Bin Zhao, Jiayi Yin, Zhuoting Xiong, Wentao Yang, Peng Guo, Meng Li, Haoxian Zeng and Jianjun Wang
Nanomaterials 2025, 15(19), 1479; https://doi.org/10.3390/nano15191479 - 27 Sep 2025
Abstract
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically [...] Read more.
The activation and dissociation of O2 molecules play a key role in the oxidation of toxic gas molecules and the oxygen reduction reaction (ORR) in hydrogen–oxygen fuel cells. The interactions between O2 molecules and the surfaces of Fe-doped γ-graphyne were systematically explored, mainly adopting the combined method of the density functional theory with dispersion correction (DFT-D3) and the climbing image nudged elastic band (CI-NEB) method. The order of the formation energy values of these defective systems is Ef(FeC2) < Ef(FeC1) < Ef(FeD1) < Ef(VC1) < Ef(VD1) < Ef(VC2) < Ef(FeD2) < Ef(VD2), which indicates that the process of Fe dopant atoms substituting single-carbon atoms/double-carbon atoms is relatively easier than the formation of vacancy-like defects. The results of ab initio molecular dynamics (AIMD) simulations confirm that the doped systems can maintain structural stability at room temperature conditions. Fe-doped atoms transfer a certain amount of electrons to the adsorbed O2 molecules, thereby causing an increase in the O-O bond length of the adsorbed O2 molecules. The electrons obtained by the anti-bonding 2π* orbitals of the adsorbed O2 molecules are mainly derived from the 3d orbitals of Fe atoms. There is a competitive relationship between the substrate’s carbon atoms and the adsorbed O2 molecules for the charges transferred from Fe atoms. In the C1 and C2 systems, O2 molecules have a greater advantage in electron accepting ability compared to the substrate’s carbon atoms. The elongation of O-O bonds and the amount of charge transfer exhibit a positive relationship. More electrons are transferred from Fe-3d orbitals to adsorbed O2 molecules, occupying the 2π* orbitals of adsorbed O2 molecules, further elongating the O-O chemical bond until it breaks. The dissociation process of adsorbed O2 molecules on the surfaces of GY-Fe systems (C2 and D2 sites) involves very low energy barriers (0.016 eV for C2 and 0.12 eV for D2). Thus, our studies may provide useful insights for designing catalyst materials for oxidation reactions and the oxygen reduction reaction. Full article
Show Figures

Graphical abstract

15 pages, 3809 KB  
Article
Co-Polymerized P(AN-co-IA)-Derived Electrospun Nanofibers with Improved Graphitization via Dual-Metallocene Integration at Low Temperature
by Taewoo Kim, Tae Hoon Ko, Byoung-Suhk Kim, Yong-Sik Chung and Hak Yong Kim
Inorganics 2025, 13(10), 318; https://doi.org/10.3390/inorganics13100318 - 26 Sep 2025
Abstract
In this study, COOH-functionalized co-polymer of acrylonitrile and itaconic acid (P(AN-co-IA)) is synthesized via free radical copolymerization using DMSO as solvent. The continuous non-aligned carbon nanofibers (CNFs) with different amounts of metallocene (zirconocene and ferrocene) are fabricated through electrospinning, followed by a series [...] Read more.
In this study, COOH-functionalized co-polymer of acrylonitrile and itaconic acid (P(AN-co-IA)) is synthesized via free radical copolymerization using DMSO as solvent. The continuous non-aligned carbon nanofibers (CNFs) with different amounts of metallocene (zirconocene and ferrocene) are fabricated through electrospinning, followed by a series of heat treatments under an inert atmosphere. The influence of metallocenes on electrospun carbon nanofiber diameter, alignment, and structural ordering was systematically investigated using FESEM, XRD, Raman spectroscopy, and TEM. Incorporation of dual metallocenes significantly alters the fiber diameter, improves orientation, and promotes graphitic domain formation at 1100 °C, a much lower temperature than conventional graphitization. The optimized sample (Zr-Fe)1-P(AN-co-IA)-eGNF) exhibited the lowest ID/IG ratio compared to pristine and all prepared samples, indicating an improved degree of graphitization due to the uniform distribution of metallocene nanofiber matrix. Furthermore, the electrical conductivity of optimized (Zr-Fe)1-P(AN-co-IA)-eGNF reached the highest value (1654.5 S/m) due to the high degree of graphitization of carbon nanofibers. These results show that integrating dual metallocene is an efficient pathway for tailoring nanofiber morphology and achieving conductive, structurally ordered electrospun eGNFs at reduced temperatures, with potential applications in various fields. Full article
Show Figures

Graphical abstract

17 pages, 5036 KB  
Article
Strength and Microstructural Characteristics of Fly Ash–Waste Glass Powder Ternary Blended Concrete
by Moruf O. Yusuf, Khaled A. Alawi Al-Sodani, Adeshina A. Adewumi, Muyideen Abdulkareem and Ali H. Alateah
Materials 2025, 18(19), 4483; https://doi.org/10.3390/ma18194483 - 25 Sep 2025
Abstract
To reduce the proliferation of greenhouse gases in the construction industry, ternary blended concrete comprising fly ash (FA) powder, waste glass (WG) powder, and ordinary Portland cement (OPC) was developed such that the WG to total binder varied from 0 to 20% at [...] Read more.
To reduce the proliferation of greenhouse gases in the construction industry, ternary blended concrete comprising fly ash (FA) powder, waste glass (WG) powder, and ordinary Portland cement (OPC) was developed such that the WG to total binder varied from 0 to 20% at intervals of 5% (C80FA20-xWGx:x = WG/(WG + FA + OPC)). The developed concrete was investigated for water absorption, workability, 28-day compressive strength, binder phases, bond characteristics, microstructure, and elemental composition of the concrete. The mixture proportions of C80FA15WG5 and C80FA10WG10 exhibited better consistency and water absorption than the OPC concrete (C100FA0WG0). Furthermore, the 28 d strength of C80FA15WG5 marginally outperformed those of C80FA10WG10 and C80FA20WG0. The sample with equal proportions of FA and WG (C80FA10G10) was more amorphous owing to the disappearance of the hedenbergite phase (CaFeSi2O6) and conversion of tobermorite (CSH) to C-A-S-H. C80FA10WG10 also exhibited better microstructural stability than FA + OPC concrete (C80FA20G0), owing to the pore-filling of the microcracks within the matrix. Finally, higher Si/Ca, Ca/Al, and Si/Al ratios were recorded in C80FA10WG10 than in the case of FA preponderating WG in ternary blending. Finally, structural concrete can be produced through the ternary blending of glass waste, fly ash, and OPC, thereby promoting the valorization of solid waste and a sustainable environment. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2100 KB  
Article
Fe2+-Sensing α-Synuclein Iron-Responsive Messenger RNA/eIF4F Complex Binding and Regulating mRNA Translation Activation and Repression
by Mateen A. Khan
Int. J. Mol. Sci. 2025, 26(19), 9320; https://doi.org/10.3390/ijms26199320 - 24 Sep 2025
Viewed by 50
Abstract
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein [...] Read more.
Alpha-synuclein (α-Syn) protein plays a crucial role in the pathophysiology of Parkinson’s disease (PD). In the 5′-untranslated regions (5′-UTRs) of α-Syn, mRNA has a structured iron-responsive element (IRE) with a stem loop that regulates translation. Iron (labile as Fe2+) enhances protein synthesis rates through an IRE mRNA. This investigation aimed to describe the way in which α-Syn IRE interacts with eIF4F and establish a relationship between binding affinity and translation efficiency. The strong binding affinity of α-Syn IRE with eIF4F was demonstrated by a fluorescence-based experiment, with Ka = 8.4 × 106 M−1 at 25 °C. Fe2+ further increased (~three-fold) the affinity of α-Syn IRE with eIF4F, outcompeting binding with IRP1. With an increase in temperature (10–30 °C), Kd values increased from 35.8 ± 1.6 nM to 158 ± 8.7 nM for the interaction of α-Syn IRE with eIF4F; however, adding Fe2+ demonstrated significantly increased affinity throughout the same temperature range. Thermodynamic analyses demonstrated that α-Syn IRE/eIF4F binding occurred spontaneously, with the presence of van der Waals and hydrogen bonding. Fe2+ enhanced the α-Syn IRE/eIF4F complex’s change in enthalpic and binding free energy contributions, which led to a more stable complex formation through the involvement of more hydrogen bonding. Exogenous addition of eIF4F in depleted WG or RR lysates restored α-Syn protein synthesis. Fe2+ further boosted α-Syn mRNA translation. IRP1 repressed α-Syn translation, although the addition of Fe2+ reversed this effect by boosting activator eIF4F binding and decreasing repressor IRP1 binding. These findings reveal the significance of iron in the α-synuclein mRNA regulatory process and validate its contribution as a strong enhancer of α-Syn mRNA translation. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

Back to TopTop