Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,173)

Search Parameters:
Keywords = Fiber Bragg Grating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 17457 KB  
Article
Experimental Investigation on the Mechanisms of Fiber Bragg Gratings to Monitor the Failure Processes of Pre-Cracked Sandstone Specimens
by Zesheng Zhang, Shiming Wei and Hua Nan
Appl. Sci. 2025, 15(22), 12266; https://doi.org/10.3390/app152212266 - 19 Nov 2025
Abstract
Real-time monitoring of internal fracture evolution in fractured rock masses using fiber Bragg grating (FBG) technology can help mitigate geotechnical hazards. This study employed FBG, acoustic emission (AE), and digital image correlation (DIC) to analyze pre-cracked sandstone under uniaxial compression. During the failure [...] Read more.
Real-time monitoring of internal fracture evolution in fractured rock masses using fiber Bragg grating (FBG) technology can help mitigate geotechnical hazards. This study employed FBG, acoustic emission (AE), and digital image correlation (DIC) to analyze pre-cracked sandstone under uniaxial compression. During the failure of the pre-cracked specimens, the FBGs experienced non-uniform stresses. In the initial loading phase, the stress concentrations at the crack tips and the wing-crack development were dominated by tensile stresses, and the maximum tensile strain was 1.01%. After the initial yield strength was reached, the crack-propagation process transitioned to shear-stress dominance, and a maximum shear strain of 6.45% was exhibited. During multiple stress decreases (180–250 s), the FBG-measured local shear and tensile strains reflected stress variations that were associated with shear-locking effects and failure stages. Before the tensile-crack initiation, the FBG-detected principal-strain concentration zones exhibited prolonged incubation periods, whereas the shear-crack initiation was preceded by shorter incubation periods. The evolution curves of the damage variable, which was defined by the FBG coupling strength, could be categorized into three distinct stages: initial damage accumulation, damage acceleration, and final damage. When the initial yield strength was reached, the damage variable rapidly increased, particularly during the two stress decreases. Full article
(This article belongs to the Special Issue Novel Insights into Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

19 pages, 4316 KB  
Article
Development of a Spindle-Type FBG Pressure Sensor for Pressure Monitoring at the Wind Turbine Foundation Ring–Concrete Interface
by Xinxing Chen, Wenjing Wu, Zhenpeng Yang, Shijie Zheng and Heming Wei
Photonics 2025, 12(11), 1139; https://doi.org/10.3390/photonics12111139 - 18 Nov 2025
Viewed by 114
Abstract
This study presents a fiber Bragg grating (FBG) pressure sensor with a spindle-type protective structure, optimized using the NSGA-II algorithm, for monitoring pressure variations at the contact interface between wind turbine foundation rings and concrete. To optimize the sensor sensitivity and measurement range, [...] Read more.
This study presents a fiber Bragg grating (FBG) pressure sensor with a spindle-type protective structure, optimized using the NSGA-II algorithm, for monitoring pressure variations at the contact interface between wind turbine foundation rings and concrete. To optimize the sensor sensitivity and measurement range, the NSGA-II algorithm was employed to determine the optimal structural dimensions and material properties of the spindle-type sensor. This approach addresses two critical challenges: firstly, enhancing the survivability of FBG pressure sensors in harsh service environments, and secondly, enabling accurate monitoring of weak pressure signals at the foundation ring–concrete interface. Linearity verification tests demonstrate a sensor sensitivity of 55.01 pm/MPa within a 10 MPa measurement range, accompanied by a linear correlation coefficient of 0.999, confirming high stability of the fabricated sensors. Furthermore, wind turbine foundation model experiments validate the practical service performance of the proposed sensor. Results indicate that the spindle-type FBG pressure sensor not only withstands severe operating conditions but also achieves real-time monitoring of interfacial pressure changes in foundation ring–concrete systems. Full article
Show Figures

Figure 1

14 pages, 10601 KB  
Article
Utility Tunnel Settlement Monitoring Using Distributed Fiber Optic and Ground Penetrating Radar Technologies
by Jinyong Li, Dingfeng Cao, Tao Xiao and Chunyan Wang
Sensors 2025, 25(22), 6964; https://doi.org/10.3390/s25226964 - 14 Nov 2025
Viewed by 271
Abstract
Settlement and deformation of multi-purpose utility tunnels (MUTs) are critical factors affecting their structural integrity and service life; however, effective identification methods remain limited. This study proposes a comprehensive approach integrating Brillouin frequency domain analysis (BOFDA), fiber Bragg grating (FBG), and ground penetrating [...] Read more.
Settlement and deformation of multi-purpose utility tunnels (MUTs) are critical factors affecting their structural integrity and service life; however, effective identification methods remain limited. This study proposes a comprehensive approach integrating Brillouin frequency domain analysis (BOFDA), fiber Bragg grating (FBG), and ground penetrating radar (GPR) technologies, which was successfully applied to an MUT comprising three tanks in Baiyin City, Gansu Province, China. BOFDA enables precise localization of settlement points, FBG-based dislocation meters facilitate posture recognition of the MUT, and GPR is employed for detailed analysis of settlement causes. The results indicate that MUT deformation primarily manifests as displacement at joint locations, supplemented by deformation of the tunnel structure itself. Rotation, even settlement, and uneven settlement were identified through three FBG-based dislocation meters installed on the top and side walls. The primary causes of MUT settlement include mudstone compression and collapse of loess. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

26 pages, 1513 KB  
Review
Functional Coatings for Fiber Bragg Gratings: A Critical Review of Deposition Techniques for Embedded and Harsh-Environment Applications
by Cristian Vendittozzi, Emilia Di Micco, Michele A. Caponero and Rosaria D’Amato
Coatings 2025, 15(11), 1268; https://doi.org/10.3390/coatings15111268 - 2 Nov 2025
Viewed by 467
Abstract
Fiber Bragg Grating (FBG) sensors facilitate compact, multiplexed, and electromagnetic interference-immune monitoring in embedded and harsh environments. The removal of the polymer jacket, a measure taken to withstand elevated temperatures or facilitate integration, exposes the fragile glass. This underscores the necessity of functional [...] Read more.
Fiber Bragg Grating (FBG) sensors facilitate compact, multiplexed, and electromagnetic interference-immune monitoring in embedded and harsh environments. The removal of the polymer jacket, a measure taken to withstand elevated temperatures or facilitate integration, exposes the fragile glass. This underscores the necessity of functional coatings, which are critical for enhancing durability, calibrating sensitivity, and improving compatibility with host materials. This review methodically compares coating materials and deposition routes for FBGs, encompassing a range of techniques including top-down physical-vapor deposition (sputtering, thermal/e-beam evaporation, cathodic arc), bottom-up chemical vapor deposition (CVD)/atomic layer deposition (ALD), wet-chemical methods (sensitization/activation, electroless plating (EL), electrodeposition (ED)), fusion-based processes (casting and melt coating), and hybrid stacks (e.g., physical vapor deposition (PVD) seed → electrodeposition; gradient interlayers). The consolidation of surface-preparation best practices and quantitative trends reveals a comprehensive understanding of the interrelationships between coating material/stack, thickness/microstructure, adhesion, and sensitivity across a range of temperatures, extending from approximately 300 K to cryogenic regimes. Practical process windows and design rules are distilled to guide method selection and reliable operation across cryogenic and high-temperature regimes. Full article
Show Figures

Figure 1

14 pages, 2912 KB  
Article
Design of a Smart Foot–Ankle Brace for Tele-Rehabilitation and Foot Drop Monitoring
by Oluwaseyi Oyetunji, Austin Rain, William Feris, Austin Eckert, Abolghassem Zabihollah, Haitham Abu Ghazaleh and Joe Priest
Actuators 2025, 14(11), 531; https://doi.org/10.3390/act14110531 - 1 Nov 2025
Viewed by 516
Abstract
Foot drop, a form of paralysis affecting ankle and foot control, impairs walking and increases the risk of falls. Effective rehabilitation requires monitoring gait to guide personalized interventions. This study presents a proof-of-concept smart foot–ankle brace integrating low-cost sensors, including gyroscopes, accelerometers, and [...] Read more.
Foot drop, a form of paralysis affecting ankle and foot control, impairs walking and increases the risk of falls. Effective rehabilitation requires monitoring gait to guide personalized interventions. This study presents a proof-of-concept smart foot–ankle brace integrating low-cost sensors, including gyroscopes, accelerometers, and a Fiber Bragg Grating (FBG) array, with an Arduino-based processing platform. The system captures, in real time, the key locomotion parameters, namely, angular rotation, acceleration, and sole deformation. Experiments using a 3D-printed insole demonstrated that the device detects foot-drop-related gait deviations, with toe acceleration approximately twice that of normal walking. It also precisely detects foot deformation through FBG sensing. These results demonstrate the feasibility of the proposed system for monitoring gait abnormalities. Unlike commercial gait analysis devices, this work focuses on proof-of-concept development, providing a foundation for future improvements, including wireless integration, AI-based gait classification, and mobile application support for home-based or tele-rehabilitation applications. Full article
Show Figures

Figure 1

13 pages, 2087 KB  
Article
Optical FBG Sensor-Based System for Low-Flying UAV Detection and Localization
by Ints Murans, Roberts Kristofers Zveja, Dilan Ortiz, Deomits Andrejevs, Niks Krumins, Olesja Novikova, Mykola Khobzei, Vladyslav Tkach, Andrii Samila, Aleksejs Kopats, Pauls Eriks Sics, Aleksandrs Ipatovs, Janis Braunfelds, Sandis Migla, Toms Salgals and Vjaceslavs Bobrovs
Appl. Sci. 2025, 15(21), 11690; https://doi.org/10.3390/app152111690 - 31 Oct 2025
Viewed by 360
Abstract
With the recent increase in the threat posed by unmanned aerial vehicles (UAVs) operating in environments where conventional detection systems such as radar, optical, or acoustic detection are impractical, attention is paid to methods for detecting low-flying UAVs with small radar cross-section (RCS). [...] Read more.
With the recent increase in the threat posed by unmanned aerial vehicles (UAVs) operating in environments where conventional detection systems such as radar, optical, or acoustic detection are impractical, attention is paid to methods for detecting low-flying UAVs with small radar cross-section (RCS). The most commonly used detection methods are radar detection, which is susceptible to electromagnetic (EM) interference, and optical detection, which is susceptible to weather conditions and line-of-sight. This research aims to demonstrate the possibility of using passive optical fiber Bragg grating (FBG) as a sensitive element array for low-flying UAV detection and localization. The principle is as follows: an optical signal that propagates through an optical fiber can be modulated due to the FBG reaction on the air pressure caused by a low-flying (even hovering) UAV. As a result, a small target—the DJI Avata drone can be detected and tracked via intensity surge determination. In this paper, the experimental setup of the proposed FBG-based UAV detection system, measurement results, as well as methods for analyzing UAV-caused downwash are presented. High-speed data reading and processing were achieved for low-flying drones with the possible presence of EM clutter. The proposed system has shown the ability to, on average, detect an overpassing UAV’s flight height around 85 percent and the location around 87 percent of the time. The key advantage of the proposed approach is the comparatively straightforward implementation and the ability to detect low-flying targets in the presence of EM clutter. Full article
Show Figures

Figure 1

16 pages, 2525 KB  
Article
Study on Multi-Parameter Physical Processes and Flashover Threshold of Silicone Rubber Plate During AC Discharge in Salt Fog
by Xiaoxiang Wu, Yanpeng Hao, Haixin Wu, Jikai Bi, Zijian Wu and Lei Huang
Micromachines 2025, 16(11), 1241; https://doi.org/10.3390/mi16111241 - 31 Oct 2025
Viewed by 297
Abstract
External insulation of coastal power grids transmitting offshore wind power faces significant threats from salt fog flashovers. Current arc monitoring and early warning technologies for flashover are severely inadequate. Research on salt fog discharge processes and determining the threshold at the flashover brink [...] Read more.
External insulation of coastal power grids transmitting offshore wind power faces significant threats from salt fog flashovers. Current arc monitoring and early warning technologies for flashover are severely inadequate. Research on salt fog discharge processes and determining the threshold at the flashover brink for transmission equipment external insulation is crucial for ensuring the safe operation of coastal grids delivering offshore wind power. Fiber Bragg Grating (FBG), with its advantages of compact size, excellent insulation, and fast response, enables effective discharge monitoring and identification of the critical flashover state on external insulation surfaces. In this study, FBGs were embedded at the interfaces of typical external insulation specimens, including silicone rubber plates and epoxy resin plates, to conduct contaminated AC salt fog discharge tests. Synchronized measurements of visible light images, infrared thermal images, and FBG interface temperature were conducted to investigate the discharge physical processes on silicone rubber insulating surfaces and the flashover threshold based on FBG temperature rise rate. The results indicate that discharge process can be divided into three phases: arc initiation, extension, and flashover based on the characteristics of arc visible light images. By comparing arc locations in infrared and visible light images with the corresponding FBG interface temperature rise, the arc phase criterion of FBG interface temperature rise rate and position were proposed. Furthermore, through multiple experiments, it has been found that flashover occurs when both interface temperatures reached above 4.6 × 10−2 °C/s. This study provides a novel research methodology for physical process of external insulation discharge and flashover warning in coastal salt fog environments. Full article
Show Figures

Figure 1

21 pages, 31363 KB  
Article
SHM for Complex Composite Aerospace Structures: A Case Study on Engine Fan Blades
by Georgios Galanopoulos, Shweta Paunikar, Giannis Stamatelatos, Theodoros Loutas, Nazih Mechbal, Marc Rébillat and Dimitrios Zarouchas
Aerospace 2025, 12(11), 963; https://doi.org/10.3390/aerospace12110963 - 28 Oct 2025
Cited by 1 | Viewed by 531
Abstract
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor [...] Read more.
Composite engine fan blades are critical aircraft engine components, and their failure can compromise the safe and reliable operation of the entire aircraft. To enhance aircraft availability and safety within a condition-based maintenance framework, effective methods are needed to identify damage and monitor the blades’ condition throughout manufacturing and operation. This paper presents a unique experimental framework for real-time monitoring of composite engine blades utilizing state-of-the-art structural health monitoring (SHM) technologies, discussing the associated benefits and challenges. A case study is conducted on a representative Foreign Object Damage (FOD) panel, a substructure of a LEAP (Leading Edge Aviation Propulsion) engine fan blade, which is a curved, 3D-woven Carbon Fiber Reinforced Polymer (CFRP) panel with a secondary bonded steel leading edge. The loading scheme involves incrementally increasing, cyclic 4-point bending (loading–unloading) to induce controlled damage growth, simulating in-operation conditions and allowing evaluation of flexural properties before and after degradation. External damage, simulating foreign object impact common during flight, is introduced using a drop tower apparatus either before or during testing. The panel’s condition is monitored in-situ and in real time by two types of SHM sensors: screen-printed piezoelectric sensors for guided ultrasonic wave propagation studies and surface-bonded Fiber Bragg Grating (FBG) strain sensors. Experiments are conducted until panel collapse, and degradation is quantified by the reduction in initial stiffness, derived from the experimental load-displacement curves. This paper aims to demonstrate this unique experimental setup and the resulting SHM data, highlighting both the potential and challenges of this SHM framework for monitoring complex composite structures, while an attempt is made at correlating SHM data with structural degradation. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 1069 KB  
Review
Optical Fiber Sensing Technologies in Radiation Therapy
by Zhe Guang, Chuan He, Victoria Bry, Anh Le, John DeMarco and Indrin J. Chetty
Photonics 2025, 12(11), 1058; https://doi.org/10.3390/photonics12111058 - 25 Oct 2025
Viewed by 725
Abstract
Optical fiber technology is becoming essential in modern radiation therapy, enabling precise, real-time, and minimally invasive monitoring. As oncology moves toward patient-specific treatment, there is growing demand for adaptable and biologically compatible sensing tools. Fiber-optic systems meet this need by integrating into clinical [...] Read more.
Optical fiber technology is becoming essential in modern radiation therapy, enabling precise, real-time, and minimally invasive monitoring. As oncology moves toward patient-specific treatment, there is growing demand for adaptable and biologically compatible sensing tools. Fiber-optic systems meet this need by integrating into clinical workflows with highly localized dosimetric and spectroscopic feedback. Their small size and flexibility allow deployment within catheters, endoscopes, or treatment applicators, making them suitable for both external beam and internal therapies. This paper reviews the fundamental principles and diverse applications of optical fiber sensing technologies in radiation oncology, focusing on dosimetry, spectroscopy, imaging, and adaptive radiotherapy. Implementations such as scintillating and Bragg grating-based dosimeters demonstrate feasibility for in vivo dose monitoring. Spectroscopic techniques, such as Raman and fluorescence spectroscopy, offer real-time insights into tissue biochemistry, aiding in treatment response assessment and tumor characterization. However, despite such advantages of optical fiber sensors, challenges such as signal attenuation, calibration demands, and limited dynamic range remain. This paper further explores clinical application, technical limitations, and future directions, emphasizing multiplexing capabilities, integration and regulatory considerations, and trends in machine learning development. Collectively, these optical fiber sensing technologies show strong potential to improve the safety, accuracy, and adaptability of radiation therapy in personalized cancer care. Full article
Show Figures

Figure 1

34 pages, 3027 KB  
Article
Preliminary Thermo-Mechanical Evaluation of Fiber Bragg Grating Sensors for Structural Monitoring: Toward Application in Generation IV Nuclear Reactors
by Rocco Contangelo, Carlo Giovanni Ferro, Andrea Bagnasco, Quentin Pouille and Andrea Mazza
Micromachines 2025, 16(11), 1204; https://doi.org/10.3390/mi16111204 - 23 Oct 2025
Viewed by 579
Abstract
The performance and longevity of next-generation nuclear reactors depend on the implementation of sensing technologies able to withstand extreme conditions. This study evaluates the performance of femtosecond-laser-inscribed Fiber Bragg Grating (fs-FBG) sensors under simulated startup low-power conditions representative of newcleo’s Generation IV [...] Read more.
The performance and longevity of next-generation nuclear reactors depend on the implementation of sensing technologies able to withstand extreme conditions. This study evaluates the performance of femtosecond-laser-inscribed Fiber Bragg Grating (fs-FBG) sensors under simulated startup low-power conditions representative of newcleo’s Generation IV Lead-cooled Fast Reactors (LFRs). The primary goal of this preliminary test phase is to validate the suitability of fs-FBG sensors for high-temperature (300 °C) and mechanical stress (16–80 MPa cyclic tensile stress) monitoring, emphasizing their reliability and accuracy. The experimental campaign involved rigorous thermal and thermo-mechanical testing, conducted in compliance with ASTM standards, to assess key performance metrics such as linearity, repeatability, and precision. The results demonstrate that fs-FBG sensors deliver consistent and reliable measurements in extreme environments, with a temperature sensitivity of 12.62 pm/°C and a displacement sensitivity of 3.95 nm/mm. These findings provide a strong basis for the use of fs-FBG sensors in Generation IV nuclear reactors, highlighting their potential as advanced tools for structural health monitoring. Full article
Show Figures

Figure 1

8 pages, 4614 KB  
Communication
A 1908 nm Internal-Cavity Tm-Doped Fiber Laser Pumped by a 1570 nm Er/Yb Fiber Laser
by Yang Li, Yunpeng Wang, Dongming Zhang, Hailin Hu, Wentao Zhou, Xinyu Cai, Weinan Yan, Guanjie Mao, Ming Liu and Pingxue Li
Photonics 2025, 12(10), 1036; https://doi.org/10.3390/photonics12101036 - 20 Oct 2025
Viewed by 374
Abstract
An internal-cavity Tm-doped all-fiber laser at 1908 nm in-band-pumped by a 1570 nm Er/Yb co-doped fiber laser is proposed. An external-cavity fiber oscillator composed of a pair of high-reflectivity (HR) fiber Bragg gratings (FBGs) at 1570 nm pumped by 915 nm laser diodes [...] Read more.
An internal-cavity Tm-doped all-fiber laser at 1908 nm in-band-pumped by a 1570 nm Er/Yb co-doped fiber laser is proposed. An external-cavity fiber oscillator composed of a pair of high-reflectivity (HR) fiber Bragg gratings (FBGs) at 1570 nm pumped by 915 nm laser diodes (LDs) serves as the bidirectional pumping source for the 1908 nm internal-cavity fiber oscillator to achieve high-efficiency laser output. Firstly, a maximum output power of 10 W is realized at a 915 nm pump power of 36.8 W in the single 1570 nm Er/Yb fiber oscillator, with a corresponding slope efficiency and a signal-to-noise ratio (SNR) of 28.1% and 62 dB, respectively. The beam quality factor M2 of the single 1570 nm Er/Yb fiber oscillator is about 1.2. In the 1908 nm internal-cavity Tm-doped all-fiber laser, the maximum output power is 482 mW when the pump power at 915 nm reaches 12.6 W, with a corresponding slope efficiency of 8.1%. Under the same 915 nm pump power, the slope efficiency of the 1908 nm Tm-doped fiber laser with an external-cavity pump is 5.3%. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

16 pages, 2574 KB  
Article
Early Warning of AC Salt Fog Flashover on Composite Insulators Using Fiber Bragg Grating Sensing and Visible Arc Images
by Xiaoxiang Wu, Yanpeng Hao, Zijian Wu, Jikai Bi, Haixin Wu and Lei Huang
Micromachines 2025, 16(10), 1171; https://doi.org/10.3390/mi16101171 - 16 Oct 2025
Cited by 1 | Viewed by 431
Abstract
External insulation of coastal power grids faces harsh conditions and is highly susceptible to flashover. Currently, technologies for online monitoring and flashover early warning are severely lacking. As a reflective passive sensing device, Fiber Bragg Grating (FBG) enables the monitoring of surface discharge [...] Read more.
External insulation of coastal power grids faces harsh conditions and is highly susceptible to flashover. Currently, technologies for online monitoring and flashover early warning are severely lacking. As a reflective passive sensing device, Fiber Bragg Grating (FBG) enables the monitoring of surface discharge and provides an early warning for flashover on external insulation. A 10 kV fiber-optic composite insulator was developed in this study. A linear relationship between the FBG central wavelength and interfacial temperature was established through temperature calibration experiments. Coastal salt fog conditions were simulated in an artificial fog chamber, where AC pollution flashover tests were performed on the fiber-optic composite insulator. FBG central wavelength and visible images of discharge were synchronously acquired during experimentation. Experimental results indicate that the interfacial locations on FBGs where the temperature increases during flashover coincide with the positions of visible discharge arcs, demonstrating the effectiveness of the monitoring method. A temperature rise rate of 4.88 × 10−2 °C/s was found to trigger flashover warning, while a rate of 4.96 × 10−2 °C/s initiated trip protection. A discharge-region ratio characteristic was proposed for visible discharge images based on highlight area ratio, R-channel deviation, and mean saturation features. This characteristic serves as a flashover warning when its value reaches 46.7%. This study provides a novel research approach for online monitoring and flashover early warning of external insulation in coastal salt fog environments. Full article
Show Figures

Figure 1

32 pages, 17501 KB  
Article
Stress Concentration-Based Material Leakage Fault Online Diagnosis of Vacuum Pressure Vessels Based on Multiple FBG Monitoring Data
by Zhe Gong, Fu-Kang Shen, Yong-Hao Liu, Chang-Lin Yan, Jia Rui, Peng-Fei Cao, Hua-Ping Wang and Ping Xiang
Materials 2025, 18(20), 4697; https://doi.org/10.3390/ma18204697 - 13 Oct 2025
Viewed by 392
Abstract
Timely detection of leaks is essential for the safe and reliable operation of pressure vessels used in superconducting systems, aerospace, and medical equipment. To address the lack of efficient online leak detection methods for such vessels, this paper proposes a quasi-distributed fiber Bragg [...] Read more.
Timely detection of leaks is essential for the safe and reliable operation of pressure vessels used in superconducting systems, aerospace, and medical equipment. To address the lack of efficient online leak detection methods for such vessels, this paper proposes a quasi-distributed fiber Bragg grating (FBG) sensing network combined with theoretical stress analysis to diagnose vessel conditions. We analyze the stress–strain distributions of vacuum vessels under varying pressures and examine stress concentration effects induced by small holes; these analyses guided the design and placement of quasi-distributed FBG sensors around the vacuum valve for online leakage monitoring. To improve measurement accuracy, we introduce a vibration correction algorithm that mitigates pump-induced vibration interference. Comparative tests under three leakage scenarios demonstrate that when leakage occurs during vacuum extraction, the proposed system can reliably detect the approximate leak location. The results indicate that combining an FBG sensing network with stress concentration analysis enables initial localization and assessment of leak severity, providing valuable support for the safe operation and rapid maintenance of vacuum pressure vessels. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

16 pages, 2574 KB  
Article
Addressing a Special Case of Zero-Crossing Range Adjustment Detection in a Passive Autoranging Circuit for the FBG/PZT Photonic Current Transducer
by Burhan Mir, Grzegorz Fusiek and Pawel Niewczas
Sensors 2025, 25(20), 6311; https://doi.org/10.3390/s25206311 - 12 Oct 2025
Viewed by 554
Abstract
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). [...] Read more.
This paper analyses a special case in evaluating the passive autoranging (AR) technique that dynamically extends the measurement range of a fiber Bragg grating/piezoelectric transducer (FBG/PZT) operating with a current transformer (CT) to realize a dual-purpose metering and protection photonic current transducer (PCT). The technique relies on shorting serially connected burden resistors operating with the CT, using MOSFET switches that react to a changing input current to extend measurement range. The rapid changes in the voltage at the FBG/PZT transducer that are associated with the MOSFET switching are then used on the FBG interrogator side to select the correct measurement range. However, when the MOSFET switching in the AR circuit occurs near the zero-crossing of the input current, the rapid changes in the voltage presented to the FBG/PZT no longer occur, rendering the correct range setting at the interrogator side problematic. The basic switching detection algorithm based on voltage derivative (dV/dt) thresholds proposed in the previous research is not sufficiently sensitive in these conditions, leading to incorrect range selection. To address this, a new detection algorithm based on temporal slope differencing around the zero-crossing is proposed as an additional detection mechanism for these special cases. Thus, the improved hybrid algorithm additionally computes the derivative dV/dt at the FBG/PZT voltage signal within a focused 6 ms temporal window centered around the zero-crossing point, a 3 ms window before and after each zero-crossing instance. It then compares the difference between these two values to a predefined threshold. If the difference exceeds the threshold, a switching event is identified. This method reliably detects even subtle switching events near zero crossings, enabling the accurate reconstruction of the burden current. The performance of the improved algorithm is validated through simulations and experimental results involving zero-crossing switching scenarios. Results indicate that the proposed algorithm improves MOSFET switching detection and facilitates reliable waveform reconstruction without requiring additional hardware. Full article
(This article belongs to the Special Issue Optical Sensing in Power Systems)
Show Figures

Figure 1

14 pages, 5356 KB  
Article
Fiber Optic Fabry-Perot Interferometer Pressure Sensors for Oil Well
by Zijia Liu, Jin Cheng, Jinheng Li, Junming Li, Longjiang Zhao, Zhiwei Zheng, Peizhe Huang and Hao Li
Sensors 2025, 25(20), 6297; https://doi.org/10.3390/s25206297 - 11 Oct 2025
Viewed by 822
Abstract
In oil well environments, pressure sensors are often challenged by electromagnetic interference, temperature drift, and corrosive fluids, which reduce their stability and service life. To improve long-term reliability under these conditions, we developed a fiber optic Fabry–Perot (FP) cavity pressure sensor that employs [...] Read more.
In oil well environments, pressure sensors are often challenged by electromagnetic interference, temperature drift, and corrosive fluids, which reduce their stability and service life. To improve long-term reliability under these conditions, we developed a fiber optic Fabry–Perot (FP) cavity pressure sensor that employs an Inconel 718 diaphragm to provide both high mechanical strength and corrosion resistance. An integrated fiber Bragg grating (FBG) was included to monitor temperature simultaneously, allowing temperature–pressure cross-sensitivity to be decoupled. The sensor was fabricated and tested over a temperature range of 20–100 °C and a pressure range of 0–60 MPa. Experimental characterization showed that the FP cavity length shifted linearly with pressure, with a sensitivity of 377 nm/MPa, while the FBG demonstrated a temperature sensitivity of 0.012 nm/°C. After temperature compensation, the overall pressure measurement accuracy reached 0.5% of the full operating pressure range (0–60 MPa). These results confirm that the combined FP–FBG sensing approach maintained stable performance in harsh downhole conditions, making it suitable for pressure monitoring in shallow and medium-depth reservoirs. The proposed design offers a practical route to extend the operational lifetime of optical sensors in oilfield applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop