Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (700)

Search Parameters:
Keywords = GATA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 233 KB  
Article
Clinical Utility of a Targeted Next-Generation Sequencing Panel for Inherited Platelet Disorders in Children
by Dilek Kaçar, Mustafa Altan, Turan Bayhan, Said Furkan Yıldırım, Fatma Burçin Kurtipek, Özlem Arman Bilir, Namık Yaşar Özbek and Neşe Yaralı
Diagnostics 2025, 15(17), 2210; https://doi.org/10.3390/diagnostics15172210 (registering DOI) - 30 Aug 2025
Abstract
Background/Objectives: Inherited platelet disorders (IPDs) are diverse conditions characterized by abnormalities in platelet count and function. Next-Generation Sequencing (NGS) shows promise as a diagnostic tool in the diagnosis of IPDs. This study aims to assess the clinical value and limitations of using [...] Read more.
Background/Objectives: Inherited platelet disorders (IPDs) are diverse conditions characterized by abnormalities in platelet count and function. Next-Generation Sequencing (NGS) shows promise as a diagnostic tool in the diagnosis of IPDs. This study aims to assess the clinical value and limitations of using a targeted NGS panel in diagnosing children with suspected IPDs. Methods: We conducted a retrospective study of 93 children evaluated for suspected IPDs. A targeted NGS panel of 14 IPD-associated genes (RUNX1, WAS, ADAMTS13, ANKRD26, CYCS, GATA1, GP1BA, GB1BB, GP9, ITGA2B, ITGB3, MASTL, MPL, MYH9) was performed. Results: Genetic variants were identified in 30 patients (32.3% of the cohort). A total of 37 variants, of which 15 (40.5%) were novel, were found across 11 of the 14 genes on the panel (all except MPL, CYCS, and RUNX1). Variants were most frequently found in ITGB3 (18.9% of variants), GP1BA (16.2%), and ADAMTS13 (16.2%) genes. The majority of variants (64.9%) were classified as variants of uncertain significance (VUS), followed by likely pathogenic (LP) (27%) and pathogenic (8.1%) variants. Most variants were in a heterozygous state (73%). Specific cases highlighted complex genetic scenarios, such as co-occurring variants, and the identification of pathogenic and LP variants in patients initially presenting with immune thrombocytopenia. Conclusions: NGS helps to identify genetic causes, assess risk, manage, and provide genetic counseling in the management of IPDs. However, the prevalence of VUS underscores the need for a multidisciplinary approach to evaluate NGS results accurately. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
15 pages, 10472 KB  
Article
Establishment of a CRISPR/dCas9 Activation Library for Screening Transcription Factors Co-Regulating OCT4 with GATA4 in Pig Cells
by Xiaoxia Yao, Mingjie Feng, Chengbo Sun, Sijia Yang, Zhongyu Yuan, Xueqing Liu, Qinjian Li, Chaoqian Jiang, Xiaogang Weng, Jun Song and Yanshuang Mu
Cells 2025, 14(17), 1330; https://doi.org/10.3390/cells14171330 - 28 Aug 2025
Viewed by 147
Abstract
OCT4 is a critical transcription factor for early embryonic development and pluripotency. Previous studies have shown that the regulation of OCT4 by the transcription factor GATA4 is species-specific in pigs. This study aimed to further investigate whether there are other transcription factors that [...] Read more.
OCT4 is a critical transcription factor for early embryonic development and pluripotency. Previous studies have shown that the regulation of OCT4 by the transcription factor GATA4 is species-specific in pigs. This study aimed to further investigate whether there are other transcription factors that co-regulate the transcription of OCT4 with GATA4 in pigs. A CRISPR activation (CRISPRa) sgRNA library was designed and constructed, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs. Then, a pig PK15 cell line was engineered with a single-copy OCT4 promoter-driven EGFP reporter at the ROSA26 locus, combined with the dCas9-SAM system for transcriptional activation. The CRISPRa sgRNA lentiviral library was used to screen for transcription factors, with or without GATA4 overexpression. Flow cytometry combined with high-throughput sequencing identified MYC, SOX2, and PRDM14 as activators and OTX2 and CDX2 as repressors of OCT4. In the presence of GATA4, transcription factors such as SALL4 and STAT3 showed synergistic activation. Functional validation confirmed that HOXD13 upregulates OCT4, while OTX2 inhibits it. GATA4 and SALL4 synergistically enhance OCT4 expression. These findings provide new insights into combinatorial mechanisms that control the transcriptional regulation of OCT4 in pigs. Full article
Show Figures

Figure 1

18 pages, 1473 KB  
Article
Neutrophil to Lymphocyte Ratio a Prognostic Tool in Endometrial Cancer Among Classical Prognostic Factors
by Alexandra Timea Kirsch-Mangu, Alexandru Țîpcu, Vlad Alexandru Gâta, Diana Cristina Pop, Zsolt Fekete, Alexandru Irimie and Paul Milan Kubelac
Diagnostics 2025, 15(17), 2172; https://doi.org/10.3390/diagnostics15172172 - 27 Aug 2025
Viewed by 234
Abstract
Background: Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries. Despite advances in diagnosis and treatment, recurrence and mortality remain significant concerns. The neutrophil-to-lymphocyte ratio (NLR), a marker of systemic inflammation, has shown prognostic value in several malignancies, but its [...] Read more.
Background: Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries. Despite advances in diagnosis and treatment, recurrence and mortality remain significant concerns. The neutrophil-to-lymphocyte ratio (NLR), a marker of systemic inflammation, has shown prognostic value in several malignancies, but its utility in EC remains underexplored. Objective: To evaluate the prognostic significance of the preoperative NLR in patients with endometrial cancer undergoing primary surgical treatment. Methods: We conducted a retrospective cohort study including 398 patients with histologically confirmed endometrial adenocarcinoma surgically treated at a tertiary cancer center. Preoperative complete blood counts were used to calculate NLR, and a cutoff value of 2.27 was determined through Receiver Operating Characteristic (ROC) analysis. Survival outcomes were assessed using Kaplan–Meier analysis and Cox proportional hazards modeling. Results: Patients with NLR ≥ 2.27 had significantly reduced median overall survival (OS) compared to those with NLR < 2.27 (72.3 vs. 92.8 months, p = 0.008). In multivariate analysis, elevated NLR remained an independent predictor of poorer OS (HR = 1.87; 95% CI: 1.156–3.017; p = 0.011), alongside age ≥ 64 years, lymphovascular space invasion (LVSI), lymph node involvement, and distant metastases. ROC analysis yielded an Area Under the Curve (AUC) of 0.646 for NLR. Notably, vaginal brachytherapy was associated with improved survival (HR = 0.53; p = 0.026), while other adjuvant therapies were not independently significant. Conclusions: Preoperative NLR is an accessible, independent prognostic biomarker in endometrial cancer and may serve as a surrogate indicator of tumor-promoting inflammation and immune dysregulation. Its integration into preoperative assessment could enhance risk stratification and guide personalized treatment strategies. However, findings should be interpreted in light of the study’s retrospective design, single-center setting, and lack of molecular classification data. Prospective validation is warranted to confirm its clinical utility. Full article
(This article belongs to the Special Issue Diagnosis and Management of Gynecological Cancers: Third Edition)
Show Figures

Figure 1

36 pages, 451 KB  
Review
From Petri Dish to Primitive Heart: How IVF Alters Early Cardiac Gene Networks and Epigenetic Landscapes
by Charalampos Voros, Georgios Papadimas, Marianna Theodora, Despoina Mavrogianni, Diamantis Athanasiou, Ioakeim Sapantzoglou, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Charalampos Tsimpoukelis, Ioannis Papapanagiotou, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Maria Anastasia Daskalaki, Vasileios Topalis, Nikolaos Thomakos, Panagiotis Antsaklis, Fotios Chatzinikolaou, Dimitrios Loutradis and Georgios Daskalakis
Biomedicines 2025, 13(8), 2044; https://doi.org/10.3390/biomedicines13082044 - 21 Aug 2025
Viewed by 511
Abstract
Numerous infants have been conceived by in vitro fertilization (IVF) and other assisted reproductive technologies (ART). Increasing evidence indicates that these approaches induce minor alterations in molecules during the initial phases of embryogenesis. This narrative review examines the molecular pathophysiology of embryonic cardiogenesis [...] Read more.
Numerous infants have been conceived by in vitro fertilization (IVF) and other assisted reproductive technologies (ART). Increasing evidence indicates that these approaches induce minor alterations in molecules during the initial phases of embryogenesis. This narrative review examines the molecular pathophysiology of embryonic cardiogenesis in the context of assisted reproductive technology, emphasizing transcriptional and epigenetic regulation. Essential transcription factors for cardiac development, including NKX2-5, GATA4, TBX5, ISL1, MEF2C, and HAND1/2, play a crucial role in mesodermal specification, heart tube formation, and chamber morphogenesis. Animal models and human preimplantation embryos have demonstrated that ART-related procedures, including gamete micromanipulation, supraphysiological hormone exposure, and extended in vitro culture, can alter the expression or epigenetic programming of these genes. Subsequent to ART, researchers have identified anomalous patterns of DNA methylation, alterations in histones, and modifications in chromatin accessibility in cardiogenic loci. These alterations indicate that errors occurred during the initial reprogramming process, potentially resulting in structural congenital heart abnormalities (CHDs) or modifications in cardiac function later in life. Analysis of the placental epigenome in babies conceived using assisted reproductive technology reveals that imprinted and developmental genes critical for cardiac development remain dysfunctional. This review proposes a mechanistic theory about the potential subtle alterations in the cardiogenic gene network induced by ART, synthesizing findings from molecular embryology, transcriptomics, and epigenomics. Understanding these molecular issues is crucial not only for enhancing ART protocols but also for evaluating the cardiovascular risk of children conceived by ART postnatally and for early intervention. Full article
(This article belongs to the Special Issue Epigenetic Regulation and Its Impact for Medicine (2nd Edition))
26 pages, 1971 KB  
Article
Dynamic Allocation of C-V2X Communication Resources Based on Graph Attention Network and Deep Reinforcement Learning
by Zhijuan Li, Guohong Li, Zhuofei Wu, Wei Zhang and Alessandro Bazzi
Sensors 2025, 25(16), 5209; https://doi.org/10.3390/s25165209 - 21 Aug 2025
Viewed by 472
Abstract
Vehicle-to-vehicle (V2V) and vehicle-to-network (V2N) communications are two key components of intelligent transport systems (ITSs) that can share spectrum resources through in-band overlay. V2V communication primarily supports traffic safety, whereas V2N primarily focuses on infotainment and information exchange. Achieving reliable V2V transmission alongside [...] Read more.
Vehicle-to-vehicle (V2V) and vehicle-to-network (V2N) communications are two key components of intelligent transport systems (ITSs) that can share spectrum resources through in-band overlay. V2V communication primarily supports traffic safety, whereas V2N primarily focuses on infotainment and information exchange. Achieving reliable V2V transmission alongside high-rate V2N services in resource-constrained, dynamically changing traffic environments poses a significant challenge for resource allocation. To address this, we propose a novel reinforcement learning (RL) framework, termed Graph Attention Network (GAT)-Advantage Actor–Critic (GAT-A2C). In this framework, we construct a graph based on V2V links and their potential interference relationships. Each V2V link is represented as a node, and edges connect nodes that may interfere. The GAT captures key interference patterns among neighboring vehicles while accounting for real-time mobility and channel variations. The features generated by the GAT, combined with individual link characteristics, form the environment state, which is then processed by the RL agent to jointly optimize the resource blocks allocation and the transmission power for both V2V and V2N communications. Simulation results demonstrate that the proposed method substantially improves V2N rates and V2V communication success ratios under various vehicle densities. Furthermore, the approach exhibits strong scalability, making it a promising solution for future large-scale intelligent vehicular networks operating in dynamic traffic scenarios. Full article
Show Figures

Figure 1

19 pages, 2396 KB  
Article
Alleviation of Ovalbumin-Allergic Reactions in Mice by Eucommia ulmoides Polysaccharides via Modulation of Intestinal Microbiota
by Xuelei Zhang, Ketong Bi, Chuansheng Zhao, Yuxin Cao, Yuxuan Yang, Jingxuan Jia, Yong Zhang, Dandan Zhai, Yu Yang and Peng Li
Foods 2025, 14(16), 2913; https://doi.org/10.3390/foods14162913 - 21 Aug 2025
Viewed by 355
Abstract
Food allergy represents a prevalent immunological disorder, with current clinical management primarily emphasizing allergen avoidance and emergency pharmacological intervention. Eucommia ulmoides polysaccharides, the principal bioactive constituents of the traditional Chinese medicinal plant Eucommia ulmoides, have demonstrated anti-inflammatory and antioxidant properties; however, their [...] Read more.
Food allergy represents a prevalent immunological disorder, with current clinical management primarily emphasizing allergen avoidance and emergency pharmacological intervention. Eucommia ulmoides polysaccharides, the principal bioactive constituents of the traditional Chinese medicinal plant Eucommia ulmoides, have demonstrated anti-inflammatory and antioxidant properties; however, their specific effects on food allergies remain inadequately characterized. A total of thirty-six female BALB/c mice were randomly allocated into three groups (n = 12 per group): the control group (CON group, receiving saline treatment), the allergic model group (OVA group, subjected to ovalbumin sensitization), and the intervention group (OVA+PS group, undergoing OVA sensitization followed by Eucommia ulmoides polysaccharides administration via gavage). The anti-allergic efficacy of Eucommia ulmoides polysaccharides was comprehensively evaluated through clinical allergy symptom scoring, histological and pathological tissue analysis, real-time fluorescence quantitative PCR (qRT-PCR) for the assessment of key gene expression, and 16S rDNA sequencing. The findings indicated the following: (1) The allergy scores in the OVA+PS group were significantly lower than those in the OVA group (p < 0.01). Following OVA stimulation, the rectal temperature of mice in the OVA group decreased sharply, whereas the temperature decline in the OVA+PS group was more gradual compared to the model group. (2) The liver, kidney, spleen, and intestinal tissues of mice in the OVA+PS group exhibited normal morphology, consistent with the CON group, which suggests that Eucommia ulmoides polysaccharides effectively mitigates the local inflammatory response induced by food allergy. (3) The expression of NICD in the spleen of mice in the OVA+PS group was significantly higher than in the OVA group (p < 0.05), while the expression of the Hes1 gene was significantly elevated in the OVA group compared to both the CON and OVA+PS groups (p < 0.05). In the OVA group, the expression level of Gata-3 was significantly elevated compared to both the CON group and the OVA+PS group (p < 0.05). Similarly, the expression of STAT5 in the OVA group was markedly higher than in the other groups (p < 0.05). (4) Eucommia ulmoides polysaccharides were found to modulate the intestinal microbiota composition in allergic mice, notably increasing the expression abundance of Enterobacter, Oscillibacter, and Butyricicoccus, while decreasing the expression abundance of Clostridium sensu stricto 1 and Turicibacter. (5) There was a correlation between alterations in the intestinal microbiota of mice and the expression of key genes. Specifically, the relative abundance of Blautia was negatively correlated with the expression of NICD and Gata-3 genes (p < 0.05), and the relative abundance of the Lachnospiraceae_FCS020_group was negatively correlated with the expression of the Hes1 gene (p < 0.05). In conclusion, Eucommia ulmoides polysaccharides demonstrate potential in alleviating allergic symptoms, providing a scientific foundation for the development of novel natural anti-allergic functional foods. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

9 pages, 934 KB  
Case Report
Pediatric Acute Megakaryoblastic Leukemia with a GATA2 Mutation and Monosomy 7: A Case Report and Clinical Management Challenges
by Gowri Joshi, Astil Jisho Anto, Md Maaz Mallick, Gwan Yong Lim and Łukasz Hutnik
Reports 2025, 8(3), 153; https://doi.org/10.3390/reports8030153 - 21 Aug 2025
Viewed by 318
Abstract
Background and Clinical Significance: Acute megakaryoblastic leukemia (AMKL) is a rare and aggressive hematologic malignancy. The presence of genetic abnormalities often increases the complexity of AMKL. Among these, patients with monosomy 7 constitute a high-risk group associated with a poorer prognosis and [...] Read more.
Background and Clinical Significance: Acute megakaryoblastic leukemia (AMKL) is a rare and aggressive hematologic malignancy. The presence of genetic abnormalities often increases the complexity of AMKL. Among these, patients with monosomy 7 constitute a high-risk group associated with a poorer prognosis and greater chemoresistance. We report the case of a 10-year-old boy who had AMKL along with monosomy 7 and familial GATA2 deficiency. The case highlights the diagnostic and therapeutic challenges faced, as well as the critical importance of early genetic screening and timely hematopoietic stem cell transplantation (HSCT). Case Presentation: A 10-year-old boy presented with easy bruising and pancytopenia. AMKL was diagnosed with the help of a bone marrow biopsy and immunophenotyping. Genetic testing showed a GATA2 mutation and monosomy 7. Two induction cycles with daunorubicin and cytarabine were administered but failed to eliminate residual disease. The patient also developed pneumonia of a fungal origin. HSCT was delayed due to liver toxicity and elevated minimal residual disease (MRD). Azacitidine and venetoclax stabilized the disease, thereby allowing for successful haploidentical HSCT. The patient achieved complete remission with full donor chimerism. Conclusions: This case emphasizes the importance of early molecular diagnostics in pediatric AMKL. Identifying GATA2 mutations and monosomy 7 early can help guide risk stratification and the timing of HSCT. Multimodal therapy, which includes the use of infection control and targeted agents, is important for improving the outcomes in high-risk patients. Full article
(This article belongs to the Section Haematology)
Show Figures

Figure 1

20 pages, 17002 KB  
Article
Genome-Wide Identification and Evolutionary Analysis of the GATA Transcription Factor Family in Nitrogen-Fixing Legumes
by Meng Xia, Liwen Tang, Haoming Zhai, Yezhou Liu, Liangsheng Zhang and Dan Chen
Plants 2025, 14(16), 2456; https://doi.org/10.3390/plants14162456 - 8 Aug 2025
Viewed by 356
Abstract
GATA transcription factors are crucial for plant development and environmental responses, yet their roles in plant evolution and root nodule symbiosis are still not well understood. This study identified GATA genes across the genomes of 77 representative plant species, revealing that this gene [...] Read more.
GATA transcription factors are crucial for plant development and environmental responses, yet their roles in plant evolution and root nodule symbiosis are still not well understood. This study identified GATA genes across the genomes of 77 representative plant species, revealing that this gene family originated in Charophyta and significantly expanded in both gymnosperms and angiosperms. Phylogenetic analyses, along with examinations of conserved motifs and cis-regulatory elements in Glycine max and Arabidopsis, clearly demonstrated structural and functional divergence within the GATA family. Chromosomal mapping and synteny analysis indicated that GATA gene expansion in soybean primarily resulted from whole-genome duplication events. These genes also exhibit high conservation and signs of purifying selection in Glycine max, Lotus japonicus, and Medicago truncatula. Furthermore, by integrating phylogenetic and transcriptomic data from eight nitrogen-fixing legume species, several GATA genes were identified as strongly co-expressed with NIN1, suggesting their potential co-regulatory roles in nodule development and symbiosis. Collectively, this study offers a comprehensive overview of the evolutionary dynamics of the GATA gene family and highlights their potential involvement in root nodule symbiosis in legumes, thus providing a theoretical foundation for future mechanistic studies. Full article
(This article belongs to the Special Issue Advances in Legume Crops Research—2nd Edition)
Show Figures

Figure 1

22 pages, 1785 KB  
Article
Regulatory Effects of Endometriosis-Associated Genetic Variants: A Multi-Tissue eQTL Analysis
by Asbiel Felipe Garibaldi-Ríos, Perla Graciela Rodríguez-Gutiérrez, Jesús Magdiel García-Díaz, Guillermo Moisés Zúñiga-González, Luis E. Figuera, Belinda Claudia Gómez-Meda, Ana María Puebla-Pérez, Ingrid Patricia Dávalos-Rodríguez, Blanca Miriam Torres-Mendoza, Itzae Adonai Gutiérrez-Hurtado and Martha Patricia Gallegos-Arreola
Diseases 2025, 13(8), 248; https://doi.org/10.3390/diseases13080248 - 6 Aug 2025
Viewed by 588
Abstract
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects [...] Read more.
Backgroud. Endometriosis is a chronic, estrogen-dependent inflammatory disease characterized by the ectopic presence of endometrial-like tissue. Although genome-wide association studies (GWAS) have identified susceptibility variants, their tissue-specific regulatory impact remains poorly understood. Objective. To functionally characterize endometriosis-associated variants by exploring their regulatory effects as expression quantitative trait loci (eQTLs) across six physiologically relevant tissues: peripheral blood, sigmoid colon, ileum, ovary, uterus, and vagina. Methods. GWAS-identified variants were cross-referenced with tissue-specific eQTL data from the GTEx v8 database. We prioritized genes either frequently regulated by eQTLs or showing the strongest regulatory effects (based on slope values, which indicate the direction and magnitude of the effect on gene expression). Functional interpretation was performed using MSigDB Hallmark gene sets and Cancer Hallmarks gene collections. Results. A tissue specificity was observed in the regulatory profiles of eQTL-associated genes. In the colon, ileum, and peripheral blood, immune and epithelial signaling genes predominated. In contrast, reproductive tissues showed the enrichment of genes involved in hormonal response, tissue remodeling, and adhesion. Key regulators such as MICB, CLDN23, and GATA4 were consistently linked to hallmark pathways, including immune evasion, angiogenesis, and proliferative signaling. Notably, a substantial subset of regulated genes was not associated with any known pathway, indicating potential novel regulatory mechanisms. Conclusions. This integrative approach highlights the com-plexity of tissue-specific gene regulation mediated by endometriosis-associated variants. Our findings provide a functional framework to prioritize candidate genes and support new mechanistic hypotheses for the molecular pathophysiology of endometriosis. Full article
Show Figures

Figure 1

16 pages, 3091 KB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 477
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 946 KB  
Article
Different Master Regulators Define Proximal and Distal Gastric Cancer: Insights into Prognosis and Opportunities for Targeted Therapy
by Luigi Marano, Salvatore Sorrenti, Silvia Malerba, Jaroslaw Skokowski, Karol Polom, Sergii Girnyi, Tomasz Cwalinski, Francesco Paolo Prete, Alejandro González-Ojeda, Clotilde Fuentes-Orozco, Aman Goyal, Rajan Vaithianathan, Miljana Vladimirov, Eleonora Lori, Daniele Pironi, Adel Abou-Mrad, Mario Testini, Rodolfo J. Oviedo and Yogesh Vashist
Curr. Oncol. 2025, 32(8), 424; https://doi.org/10.3390/curroncol32080424 - 28 Jul 2025
Viewed by 417
Abstract
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to [...] Read more.
Background: Gastric cancer (GC) represents a significant global health burden with considerable heterogeneity in clinical and molecular behavior. The anatomical site of tumor origin—proximal versus distal—has emerged as a determinant of prognosis and response to therapy. The aim of this paper is to elucidate the transcriptional and regulatory differences between proximal gastric cancer (PGC) and distal gastric cancer (DGC) through master regulator (MR) analysis. Methods: We analyzed RNA-seq data from TCGA-STAD and microarray data from GEO (GSE62254, GSE15459). Differential gene expression and MR analyses were performed using DESeq2, limma, corto, and RegEnrich pipelines. A harmonized matrix of 4785 genes was used for MR inference following normalization and batch correction. Functional enrichment and survival analyses were conducted to explore prognostic associations. Results: Among 364 TCGA and 492 GEO patients, PGC was associated with more aggressive clinicopathological features and poorer outcomes. We identified 998 DEGs distinguishing PGC and DGC. PGC showed increased FOXM1 (a key regulator of cell proliferation), STAT3, and NF-κB1 activity, while DGC displayed enriched GATA6, CDX2 (a marker of intestinal differentiation), and HNF4A signaling. Functional enrichment highlighted proliferative and inflammatory programs in PGC, and differentiation and metabolic pathways in DGC. MR activity stratified survival outcomes, reinforcing prognostic relevance. Conclusions: PGC and DGC are governed by distinct transcriptional regulators and signaling networks. Our findings provide a biological rationale for location-based stratification and inform targeted therapy development. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Figure 1

15 pages, 3151 KB  
Article
L1CAM Reliably Distinguishes Low-Grade Oncocytic Tumor from Other Eosinophilic Renal Neoplasms: A Multicenter Immunohistochemical Study with Diagnostic Implications
by Luciana Scuccimarri, Antonio d’Amati, Francesco Pierconti, Angela Santoro, Luigia Ciampi, Tiziana Montrone, Francesco Alfredo Zito, Giuseppe Lucarelli, Guido Rindi, Gian Franco Zannoni and Mauro Giuseppe Mastropasqua
Cancers 2025, 17(15), 2440; https://doi.org/10.3390/cancers17152440 - 23 Jul 2025
Viewed by 548
Abstract
Introduction: Low-grade oncocytic tumor (LOT) is a recently described renal neoplasm characterized by indolent clinical behavior, a small nested architecture, and distinctive immunophenotypic features. Its distinction from other eosinophilic renal tumors, such as oncocytoma, eosinophilic chromophobe renal cell carcinoma (E-chRCC), and eosinophilic vacuolated [...] Read more.
Introduction: Low-grade oncocytic tumor (LOT) is a recently described renal neoplasm characterized by indolent clinical behavior, a small nested architecture, and distinctive immunophenotypic features. Its distinction from other eosinophilic renal tumors, such as oncocytoma, eosinophilic chromophobe renal cell carcinoma (E-chRCC), and eosinophilic vacuolated tumor (EVT), can be challenging due to overlapping features. The L1 cell adhesion molecule (L1CAM) is being increasingly recognized as a potential diagnostic marker for LOT. Aims: To evaluate the diagnostic performance of L1CAM in distinguishing LOT from morphologically and immunophenotypically similar eosinophilic renal neoplasms. Methods: A total of 54 eosinophilic renal tumors (10 LOTs, 22 oncocytomas, 18 E-chRCCs, and 4 EVTs) were retrospectively collected from five academic institutions and reclassified according to the 2022 WHO criteria. All cases underwent histopathologic review and immunohistochemical analysis for CK7, CD117, GATA3, cathepsin K, and L1CAM. Results: L1CAM showed strong membranous expression in all LOTs (100%) and was negative in oncocytoma, E-chRCC, and EVT, yielding 100% sensitivity and specificity. Traditional markers exhibited overlapping patterns among tumor types. Conclusions: Our findings confirm L1CAM as a highly sensitive and specific marker for LOT, effectively distinguishing it from other eosinophilic renal neoplasms. Incorporating L1CAM into diagnostic panels may enhance accuracy, particularly in challenging cases. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

14 pages, 330 KB  
Review
Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma
by Irina Maria Pușcaș, Anda Gâta, Alexandra Roman, Silviu Albu, Vlad Alexandru Gâta and Alexandru Irimie
Medicina 2025, 61(7), 1310; https://doi.org/10.3390/medicina61071310 - 21 Jul 2025
Viewed by 394
Abstract
Nasopharyngeal carcinoma (NPC) represents a prevalent malignant tumor within the head and neck region, and enhancing the precision of prognostic assessments is a critical objective. Recent advancements in the integration of artificial intelligence (AI) and medical imaging have spurred a surge in research [...] Read more.
Nasopharyngeal carcinoma (NPC) represents a prevalent malignant tumor within the head and neck region, and enhancing the precision of prognostic assessments is a critical objective. Recent advancements in the integration of artificial intelligence (AI) and medical imaging have spurred a surge in research focusing on NPC image analysis through AI applications, particularly employing radiomics and artificial neural network approaches. This review provides a detailed examination of the prognostic advancement in NPC, utilizing imaging studies based on radiomics and deep learning techniques. The findings from these studies offer a promising outlook for achieving exceptionally precise prognoses regarding survival and treatment responses in NPC. The limitations of existing research and the potential for further application of radiomics and deep learning in NPC imaging are explored. It is recommended that future research efforts should aim to develop a comprehensive, labeled dataset of NPC images and prioritize studies that leverage AI for NPC screening. Full article
(This article belongs to the Section Oncology)
25 pages, 7475 KB  
Article
Human Dialyzable Leukocyte Extract Enhances Albendazole Efficacy and Promotes Th1/Th2-Biased Lymphocyte and Antibody Responses in Peritoneal Cavity of Murine Model of Mesocestoides vogae Infection
by Gabriela Hrčková, Dagmar Mudroňová, Katarína Reiterová, Serena Cavallero and Ilaria Bellini
Int. J. Mol. Sci. 2025, 26(14), 6994; https://doi.org/10.3390/ijms26146994 - 21 Jul 2025
Viewed by 441
Abstract
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, [...] Read more.
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, the site of larval proliferation and parasite-induced immunosuppression. Peritoneal lymphoid cells were analysed by flow cytometry and qPCR. Cells proliferative responses to ConA, LPS, and parasite excretory/secretory (E/S) antigens, cytokine production (ELISA), IgM and IgG isotypes in exudates and parasite antigen recognition (Western blot) were assessed. Efficacy was measured by larval burden and 14-3-3 gene expression in larvae. HLE combined with ABZ enhanced larval clearance and suppressed 14-3-3 gene expression in larvae. HLE and combination therapy increased CD3+ T cell frequencies, especially CD3+high, reduced regulatory CD3+/IL-10 Tregs and expression of Foxp3+. All treatments diminished CD19+/IL-10+ Bregs, correlating with lower CD9 and Atf3 mRNA levels compared to infected mice. Transcription factors T-bet expression was strongly upregulated, while GATA3 was moderately elevated. IFN-γ production and T/B cell proliferation were restored after HLE and combination therapy, partially, even in the presence of E/S antigens. IgM and total IgG levels against parasite antigens declined, while Th1-associated IgG2a increased in ABZ+HLE and HLE-treated groups. Albendazole failed to reverse the immunosuppressive Treg-type immunity but was more effective in reducing Breg populations and their functions. HLE enhanced ABZ efficacy by restoring Th1 responsiveness, reducing Treg/Breg activity, and modulating antibody profiles. It represents a promising immunomodulatory adjuvant in the treatment of the infections associated with Th2/Treg-driven immunosuppression. Full article
(This article belongs to the Special Issue Molecular Research on Parasitic Infection)
Show Figures

Figure 1

13 pages, 860 KB  
Article
Identification of Genetic Variants Using Next-Generation Sequencing in Pediatric Myelodysplastic Syndrome: From Disease Biology to Clinical Applications
by Viviane Lamim Lovatel, Gerson Moura Ferreira, Beatriz Ferreira da Silva, Rayane de Souza Torres, Rita de Cássia Barbosa da Silva Tavares, Ana Paula Silva Bueno, Eliana Abdelhay and Teresa de Souza Fernandez
Int. J. Mol. Sci. 2025, 26(14), 6907; https://doi.org/10.3390/ijms26146907 - 18 Jul 2025
Viewed by 418
Abstract
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed [...] Read more.
This study aimed to identify genetic variants using a customized next-generation sequencing (NGS) panel for pediatric myelodysplastic syndrome (pMDS) and to explore their associations with cytogenetic and clinical characteristics. Cytogenetic analyses were conducted using G-banding and fluorescence in situ hybridization. NGS was performed with the Ion Torrent Personal Genome Machine for the following genes: GATA2, RUNX1, CEBPA, ANKRD26, ETV6, SAMD9, SAMD9L, PTPN11, NRAS, SETBP1, DDX41, TP53, FLT3, SRP72, and JAK3. Analyses were performed with Ion Reporter 5.20.8.0 software. Genetic variants were classified using the dbSNP, 1000 Genomes, COSMIC, and Varsome databases. We analyzed 25 cases of pMDS; 15 presented abnormal karyotypes, and 19 showed genetic variants. Among the 29 variants identified across 12/15 genes, 27% were pathogenic and 14% were likely pathogenic, with NRAS and GATA2 most frequently associated with disease progression. A new somatic variant of uncertain significance in SETBP1 was detected in seven patients showing heterogeneous clinical outcomes. Genetic variants were found in 7/10 patients with normal karyotypes, indicating that submicroscopic alterations can shed light on disease biology. Our results highlight the critical role of a targeted NGS panel in identifying molecular alterations associated with pMDS pathogenesis, thereby enhancing diagnostic precision, prognosis, and aiding in treatment selection. Full article
Show Figures

Figure 1

Back to TopTop