Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = GF-SAA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6901 KB  
Article
Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants
by Aicha Boubker, Abdelmoula El Ouardi, Taha El Kamli, Adnane El Hamidi, Mohammed Kaicer, Faouzi Kichou, Najia Ameur, Khaoula Errafii, Rachid Ben Aakame and Aicha Sifou
Molecules 2025, 30(6), 1279; https://doi.org/10.3390/molecules30061279 - 12 Mar 2025
Viewed by 1655
Abstract
Four aromatic and therapeutic plants, Thymus vulgaris, Rosmarinus officinalis, Pimpinella anisum, and Foeniculum vulgare, were examined in this comparative study. The objectives were to assess its phytochemical composition; polyphenol, flavonoid, and tannin content; antioxidant and antibacterial activity; bioactive molecule [...] Read more.
Four aromatic and therapeutic plants, Thymus vulgaris, Rosmarinus officinalis, Pimpinella anisum, and Foeniculum vulgare, were examined in this comparative study. The objectives were to assess its phytochemical composition; polyphenol, flavonoid, and tannin content; antioxidant and antibacterial activity; bioactive molecule identification; and critical trace element quantification. Its aqueous and organic extracts were examined, focusing on ethanolic extracts. The ethanolic extract’s ability to neutralize free radicals was validated by phytochemical studies and antioxidant tests, underscoring their role in preventing oxidative stress. An Ultra-Performance Liquid Chromatography—High-Resolution Mass Spectrometry Orbitrap Exploris 120 (UPLC–HRMS Orbitrap) was used to identify the bioactive chemicals, and the results showed a variety of compounds having antibacterial and antioxidant properties. The important trace elements found in these plants were also measured using a Graphite Furnace-Atomic Absorption Spectrometer (GF-AAS). These components are essential to the biological characteristics of the plants, especially their antioxidant and antibacterial capacities. Among the aqueous extracts, it was observed that Rosmarinus officinalis and Foeniculum vulgare exhibited a MIC of 3.91 µg/mL against Staphylococcus. Additionally, R. officinalis also demonstrated a MIC of 3.91 µg/mL against Escherichia coli. All of the data were interpreted and shown using principal component analysis. The results were grouped and explained using this statistical method, which revealed a strong association between the abundance of antibacterial and antioxidant chemicals in the four plants under investigation. Full article
Show Figures

Graphical abstract

16 pages, 1850 KB  
Article
Opposing Immune-Metabolic Signature in Visceral Versus Subcutaneous Adipose Tissue in Patients with Adenocarcinoma of the Oesophagus and the Oesophagogastric Junction
by Aisling B. Heeran, Jessica McCready, Margaret R. Dunne, Noel E. Donlon, Timothy S. Nugent, Anshul Bhardwaj, Kathleen A. J. Mitchelson, Amy M. Buckley, Narayanasamy Ravi, Helen M. Roche, John V. Reynolds, Niamh Lynam-Lennon and Jacintha O’Sullivan
Metabolites 2021, 11(11), 768; https://doi.org/10.3390/metabo11110768 - 10 Nov 2021
Cited by 4 | Viewed by 3112
Abstract
Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Previous work in our group has demonstrated that overweight/obese OAC patients have better responses to neoadjuvant therapy, but the underlying mechanisms are unknown. Unravelling the immune–metabolic signatures of adipose tissue may provide insight [...] Read more.
Oesophageal adenocarcinoma (OAC) is an exemplar model of obesity-associated cancer. Previous work in our group has demonstrated that overweight/obese OAC patients have better responses to neoadjuvant therapy, but the underlying mechanisms are unknown. Unravelling the immune–metabolic signatures of adipose tissue may provide insight for this observation. We hypothesised that different metabolic pathways predominate in visceral (VAT) and subcutaneous adipose tissue (SAT) and inflammatory secretions will differ between the fat depots. Real-time ex vivo metabolic profiles of VAT and SAT from 12 OAC patients were analysed. These samples were screened for the secretion of 54 inflammatory mediators, and data were correlated with patient body composition. Oxidative phosphorylation (OXPHOS) was significantly higher in VAT when compared to SAT. OXPHOS was significantly higher in the SAT of patients receiving neoadjuvant treatment. VEGF-A, VEGF-C, P1GF, Flt-1, bFGF, IL-15, IL-16, IL-17A, CRP, SAA, ICAM-1, VCAM-1, IL-2, IL-13, IFN-γ, and MIP-1β secretions were significantly higher from VAT than SAT. Higher levels of bFGF, Eotaxin-3, and TNF-α were secreted from the VAT of obese patients, while higher levels of IL-23 and TARC were secreted from the SAT of obese patients. The angiogenic factors, bFGF and VEGF-C, correlated with visceral fat area. Levels of OXPHOS are higher in VAT than SAT. Angiogenic, vascular injury and inflammatory cytokines are elevated in VAT versus SAT, indicating that VAT may promote inflammation, linked to regulating treatment response. Full article
(This article belongs to the Special Issue Diet, Metabolites and Adipose Tissue Metabolism)
Show Figures

Figure 1

Back to TopTop