Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = GO/ZnO/nHAp composite coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9900 KB  
Article
The Preparation of a GO/ZnO/nHAp Composite Coating and the Study of Its Performance Optimization for Pure Titanium Implants
by Jiang Wu, Yu Zuo, Zhaoxi Xu, Lang Wang, Jiaju Zou, Zijian Jia, Chunmei Wang and Guoliang Zhang
Micromachines 2025, 16(6), 637; https://doi.org/10.3390/mi16060637 - 28 May 2025
Viewed by 975
Abstract
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based [...] Read more.
In this study, a graphene oxide (GO)/zinc oxide (ZnO)/hydroxyapatite (nHAp) composite coating was constructed on a pure titanium surface by microarc oxidation (MAO) pretreatment combined with hydrothermal technology (HT), thereby making it possible to explore the performance optimization of this coating for Ti-based implants. Scanning electron microscopy (SEM), an energy dispersion spectrometer (EDS), Fourier transform infrared spectroscopy (FTIR), Ramam spectroscopy (Ramam), etc., confirmed that the GO/ZnO/nHAp composites were successfully loaded onto the pure Ti surfaces. Through nanoindentation, differential thermal analysis (DiamondTG/DTA), and dynamic polarization potential detection, the GO/ZnO/nHAp composite coating imparts excellent nanohardness (2.7 + 1.0 GPa), elastic modulus (53.5 + 1.0 GPa), thermal stability, and corrosion resistance to pure Ti implants; hemolysis rate analysis, CCK-8, alkaline phosphatase (ALP) detection, alizarin red staining, and other experiments further show that the coating improves the hemocompatibility, biocompatibility, and bone guidance of the Ti implant surface. Studies have shown that GO/ZnO/nHAp composite coatings can effectively optimize the mechanical properties, corrosion resistance, biocompatibility, and bone guidance of pure Ti implants, so that they can obtain an elastic modulus that matches human bone. Full article
Show Figures

Figure 1

Back to TopTop