Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (337)

Search Parameters:
Keywords = GSR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3346 KB  
Article
Virtual Reality as a Stress Measurement Platform: Real-Time Behavioral Analysis with Minimal Hardware
by Audrey Rah and Yuhua Chen
Sensors 2025, 25(17), 5323; https://doi.org/10.3390/s25175323 (registering DOI) - 27 Aug 2025
Abstract
With the growing use of digital technologies and interactive games, there is rising interest in how people respond to challenges, stress, and decision-making in virtual environments. Studying human behavior in such settings helps to improve design, training, and user experience. Instead of relying [...] Read more.
With the growing use of digital technologies and interactive games, there is rising interest in how people respond to challenges, stress, and decision-making in virtual environments. Studying human behavior in such settings helps to improve design, training, and user experience. Instead of relying on complex devices, Virtual Reality (VR) creates new ways to observe and understand these responses in a simple and engaging format. This study introduces a lightweight method for monitoring stress levels that uses VR as the primary sensing platform. Detection relies on behavioral signals from VR. A minimal sensor such as Galvanic Skin Response (GSR), which measures skin conductance as a sign of physiological body response, supports the Sensor-Assisted Unity Architecture. The proposed Sensor-Assisted Unity Architecture focuses on analyzing the user’s behavior inside the virtual environment along with physical sensory measurements. Most existing systems rely on physiological wearables, which add both cost and complexity. The Sensor-Assisted Unity Architecture shifts the focus to behavioral analysis in VR supplemented by minimal physiological input. Behavioral cues captured within the VR environment are analyzed in real time by an embedded processor, which then triggers simple physical feedback. Results show that combining VR behavioral data with a minimal sensor can improve detection in cases where behavioral or physiological signals alone may be insufficient. While this study does not quantitatively compare the Sensor-Assisted Unity Architecture to multi-sensor setups, it highlights VR as the main platform, with sensor input offering targeted enhancements without significantly increasing system complexity. Full article
(This article belongs to the Special Issue Virtual Reality and Sensing Techniques for Human)
Show Figures

Figure 1

18 pages, 1824 KB  
Article
Dietary Carnosic Acid Supplementation Improves the Growth Performance, the Antioxidant Status, and Diversity of Intestinal Microbiota in Broilers
by Sheng Zhang, Qin Wang, Jingjing Dong, Guanhuo Li, Kaiyuan Niu, Junhao Pan, Linghan Xia, Yibing Wang and Shouqun Jiang
Antioxidants 2025, 14(8), 1026; https://doi.org/10.3390/antiox14081026 - 21 Aug 2025
Viewed by 269
Abstract
Carnosic acid (CA), a natural phenolic terpenoid compound, is widely distributed in plants such as sage and rosemary, and exhibits a strong antioxidant capacity. The aim of this study was to investigate the effects of different levels of CA on growth performance, antioxidant [...] Read more.
Carnosic acid (CA), a natural phenolic terpenoid compound, is widely distributed in plants such as sage and rosemary, and exhibits a strong antioxidant capacity. The aim of this study was to investigate the effects of different levels of CA on growth performance, antioxidant capacity, and intestinal health of yellow-feathered broilers, and then to determine the optimal dose of CA to promote sustainable broiler production. A total of 384 1-day-old yellow-feathered broilers were randomly allocated into six treatment groups with eight replicates per group and eight birds per replicate pen. The control group (CON) was fed a basal diet and the CA treated groups (CA5, CA10, CA20, CA40, and CA80) were fed diets given different doses of CA (5, 10, 20, 40, and 80 mg/kg), respectively, for 53 days (1~21 d and 22~53 d). The results showed that, in the later stages of the experiment, supplementation with 10, 20, and 40 mg/kg of CA increased (p < 0.05) the final body weight and average daily gain. Morphometric analyses of the jejunum showed that supplementation of CA increased (p < 0.05) the ratio of villus height to crypt depth (V/C). Antioxidant indices revealed that CA significantly reduced MDA levels in plasma, liver, and jejunum, while enhancing activities of GSH-Px, T-SOD, and T-AOC (p < 0.05). Moreover, CA upregulated hepatic Nrf2, HO-1, GSH-Px, and GSR expression via downregulated Keap1. The analysis of intestinal microbiota showed that CA increased (p < 0.05) microbial α diversity (Ace, Chao, and Sobs indices) and increased (p < 0.05) beneficial bacteria, such as Streptococcus, Enterococcus, and Phascolarctobacterium. In conclusion, CA improves growth performance, antioxidant capacity, intestinal health, and gut microbial diversity in broilers. Under the conditions of this experiment, quadratic regressions for different variables showed that the optimal range for supplemental CA in chicken’s diet was 19.11~76.85 mg/kg. Combined with experimental observation and regression analysis, the optimal level of supplementation was 40 mg/kg. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

13 pages, 878 KB  
Article
A Wearable EMG-Driven Closed-Loop TENS Platform for Real-Time, Personalized Pain Modulation
by Jiahao Du, Shengli Luo and Ping Shi
Sensors 2025, 25(16), 5113; https://doi.org/10.3390/s25165113 - 18 Aug 2025
Cited by 1 | Viewed by 660
Abstract
A wearable closed-loop transcutaneous electrical nerve stimulation (TENS) platform has been developed to address the limitations of conventional open-loop neuromodulation systems. Unlike existing systems such as CLoSES—which targets intracranial stimulation—and electromyography-triggered functional electrical stimulation (EMG-FES) platforms primarily used for motor rehabilitation, the proposed [...] Read more.
A wearable closed-loop transcutaneous electrical nerve stimulation (TENS) platform has been developed to address the limitations of conventional open-loop neuromodulation systems. Unlike existing systems such as CLoSES—which targets intracranial stimulation—and electromyography-triggered functional electrical stimulation (EMG-FES) platforms primarily used for motor rehabilitation, the proposed device uniquely integrates low-latency surface electromyography (sEMG)-driven control with six-channel current stimulation in a fully wearable, non-invasive format aimed at ambulatory pain modulation. The system combines real-time sEMG acquisition, adaptive signal processing, a programmable multi-channel stimulation engine, and a high-voltage, boost-regulated power supply within a compact, battery-powered architecture. Bench-top evaluations demonstrate rapid response to EMG events and stable biphasic output (±22 mA) across all channels with high electrical isolation. A human-subject protocol using the Cold Pressor Test (CPT), heart rate variability (HRV), and galvanic skin response (GSR) has been designed to evaluate analgesic efficacy. While institutional review board (IRB) approval is pending, the system establishes a robust foundation for future personalized, mobile neuromodulation therapies. Full article
Show Figures

Figure 1

26 pages, 663 KB  
Article
Multi-Scale Temporal Fusion Network for Real-Time Multimodal Emotion Recognition in IoT Environments
by Sungwook Yoon and Byungmun Kim
Sensors 2025, 25(16), 5066; https://doi.org/10.3390/s25165066 - 14 Aug 2025
Viewed by 457
Abstract
This paper introduces EmotionTFN (Emotion-Multi-Scale Temporal Fusion Network), a novel hierarchical temporal fusion architecture that addresses key challenges in IoT emotion recognition by processing diverse sensor data while maintaining accuracy across multiple temporal scales. The architecture integrates physiological signals (EEG, PPG, and GSR), [...] Read more.
This paper introduces EmotionTFN (Emotion-Multi-Scale Temporal Fusion Network), a novel hierarchical temporal fusion architecture that addresses key challenges in IoT emotion recognition by processing diverse sensor data while maintaining accuracy across multiple temporal scales. The architecture integrates physiological signals (EEG, PPG, and GSR), visual, and audio data using hierarchical temporal attention across short-term (0.5–2 s), medium-term (2–10 s), and long-term (10–60 s) windows. Edge computing optimizations, including model compression, quantization, and adaptive sampling, enable deployment on resource-constrained devices. Extensive experiments on MELD, DEAP, and G-REx datasets demonstrate 94.2% accuracy on discrete emotion classification and 0.087 mean absolute error on dimensional prediction, outperforming the best baseline (87.4%). The system maintains sub-200 ms latency on IoT hardware while achieving a 40% improvement in energy efficiency. Real-world deployment validation over four weeks achieved 97.2% uptime and user satisfaction scores of 4.1/5.0 while ensuring privacy through local processing. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 6938 KB  
Article
Intelligent Detection of Cognitive Stress in Subway Train Operators Using Multimodal Electrophysiological and Behavioral Signals
by Xinyi Yang and Lu Yu
Symmetry 2025, 17(8), 1298; https://doi.org/10.3390/sym17081298 - 11 Aug 2025
Viewed by 399
Abstract
Subway train operators face the risk of cumulative cognitive stress due to factors such as visual fatigue from prolonged high-speed tunnel driving, irregular shift patterns, and the monotony of automated operations. This can lead to cognitive decline and human error accidents. Current monitoring [...] Read more.
Subway train operators face the risk of cumulative cognitive stress due to factors such as visual fatigue from prolonged high-speed tunnel driving, irregular shift patterns, and the monotony of automated operations. This can lead to cognitive decline and human error accidents. Current monitoring of cognitive stress risk predominantly relies on single-modal methods, which are susceptible to environmental interference and offer limited accuracy. This study proposes an intelligent multimodal framework for cognitive stress monitoring by leveraging the symmetry principles in physiological and behavioral manifestations. The symmetry of photoplethysmography (PPG) waveforms and the bilateral symmetry of head movements serve as critical indicators reflecting autonomic nervous system homeostasis and cognitive load. By integrating these symmetry-based features, this study constructs a spatiotemporal dynamic feature set through fusing physiological signals such as PPG and galvanic skin response (GSR) with head and facial behavioral features. Furthermore, leveraging deep learning techniques, a hybrid PSO-CNN-GRU-Attention model is developed. Within this model, the Particle Swarm Optimization (PSO) algorithm dynamically adjusts hyperparameters, and an attention mechanism is introduced to weight multimodal features, enabling precise assessment of cognitive stress states. Experiments were conducted using a full-scale subway driving simulator, collecting data from 50 operators to validate the model’s feasibility. Results demonstrate that the complementary nature of multimodal physiological signals and behavioral features effectively overcomes the limitations of single-modal data, yielding significantly superior model performance. The PSO-CNN-GRU-Attention model achieved a predictive coefficient of determination (R2) of 0.89029 and a mean squared error (MSE) of 0.00461, outperforming the traditional BiLSTM model by approximately 22%. This research provides a high-accuracy, non-invasive solution for detecting cognitive stress in subway operators, offering a scientific basis for occupational health management and the formulation of safe driving intervention strategies. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

19 pages, 6597 KB  
Article
GSR Deficiency Exacerbates Oxidative Stress and Promotes Pulmonary Fibrosis
by Wenyu Zhao, Hehe Cao, Wenbo Xu, Yudi Duan, Yulong Gan, Shuang Huang, Ying Cao, Siqi Long, Yingying Zhang, Guoying Yu and Lan Wang
Biomolecules 2025, 15(7), 1050; https://doi.org/10.3390/biom15071050 - 20 Jul 2025
Viewed by 671
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disorder characterized by excessive scarring of lung tissue, predominantly affecting middle-aged and elderly populations. Oxidative stress plays a pivotal role in the pathogenesis of pulmonary fibrosis, disrupting redox homeostasis and driving fibrotic progression. [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disorder characterized by excessive scarring of lung tissue, predominantly affecting middle-aged and elderly populations. Oxidative stress plays a pivotal role in the pathogenesis of pulmonary fibrosis, disrupting redox homeostasis and driving fibrotic progression. Glutathione reductase (GSR), a key antioxidant enzyme, is essential for maintaining cellular glutathione (GSH) levels and mitigating oxidative damage. However, the specific involvement of GSR in IPF remains poorly understood. This study found that GSR levels were downregulated in IPF patients and mice treated with bleomycin (BLM). GSR knockdown enhanced epithelial-to-mesenchymal transition (EMT) in A549 cells and promoted the activation of MRC5 cells. Additionally, GSR depletion promoted cellular migration and senescence in both A549 and MRC5 cells. Mechanistically, silencing GSR in A549 and MRC5 cells led to a marked reduction in intracellular GSH levels, resulting in elevated reactive oxygen species (ROS) accumulation, thereby promoting the activation of the TGF-β/Smad2 signaling pathway. In conclusion, our findings demonstrate that GSR deficiency aggravates pulmonary fibrosis by impairing antioxidant defense mechanisms, promoting EMT, and activating fibroblasts through the TGF-β/Smad2 signaling. These findings suggest that GSR may be essential in reducing the fibrotic progression of IPF. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

28 pages, 6504 KB  
Article
Aging-in-Place Attachment Among Older Adults in Macau’s High-Density Community Spaces: A Multi-Dimensional Empirical Study
by Hongzhan Lai, Stephen Siu Yu Lau, Yuan Su and Chen-Yi Sun
World 2025, 6(3), 101; https://doi.org/10.3390/world6030101 - 17 Jul 2025
Viewed by 1184
Abstract
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This [...] Read more.
This study explores key factors influencing Aging-in-Place Attachment (AiPA) among older adults in Macau’s high-density community spaces, emphasizing interactions between the built environment, behavior, and psychology. A multidimensional framework evaluates environmental, behavioral, human-factor, and psychological contributions. A mixed-methods, multisource approach was employed. This study measured spatial characteristics of nine public spaces, conducted systematic behavioral observations, and collected questionnaire data on place attachment and aging intentions. Eye-tracking and galvanic skin response (GSR) captured visual attention and emotional arousal. Hierarchical regression analysis tested the explanatory power of each variable group, supplemented by semi-structured interviews for qualitative depth. The results showed that the physical environment had a limited direct impact but served as a critical foundation. Behavioral variables increased explanatory power (~15%), emphasizing community engagement. Human-factor data added ~4%, indicating that sensory and habitual interactions strengthen bonds. Psychological factors contributed most (~59%), confirming AiPA as a multidimensional construct shaped primarily by emotional and social connections, supported by physical and behavioral contexts. In Macau’s dense urban context, older adults’ desire to age in place is mainly driven by emotional connection and social participation, with spatial design serving as an enabler. Effective age-friendly strategies must extend beyond infrastructure upgrades to cultivate belonging and interaction. This study advances environmental gerontology and architecture theory by explaining the mechanisms of attachment in later life. Future work should explore how physical spaces foster psychological well-being and examine emerging factors such as digital and intergenerational engagement. Full article
Show Figures

Figure 1

43 pages, 1191 KB  
Review
Biomimetic Strategies for Nutraceutical Delivery: Advances in Bionanomedicine for Enhanced Nutritional Health
by Vicente Javier Clemente-Suárez, Alvaro Bustamante-Sanchez, Alejandro Rubio-Zarapuz, Alexandra Martín-Rodríguez, José Francisco Tornero-Aguilera and Ana Isabel Beltrán-Velasco
Biomimetics 2025, 10(7), 426; https://doi.org/10.3390/biomimetics10070426 - 1 Jul 2025
Viewed by 1097
Abstract
Background: Biomimetic strategies have gained increasing attention for their ability to enhance the delivery, stability, and functionality of nutraceuticals by emulating natural biological systems. However, the literature remains fragmented, often focusing on isolated technologies without integrating regulatory, predictive, or translational perspectives. Objective: This [...] Read more.
Background: Biomimetic strategies have gained increasing attention for their ability to enhance the delivery, stability, and functionality of nutraceuticals by emulating natural biological systems. However, the literature remains fragmented, often focusing on isolated technologies without integrating regulatory, predictive, or translational perspectives. Objective: This review aims to provide a comprehensive and multidisciplinary synthesis of biomimetic and bio-inspired nanocarrier strategies for nutraceutical delivery, while identifying critical gaps in standardization, scalability, and clinical translation. Results: We present a structured classification matrix that maps biomimetic delivery systems by material type, target site, and bioactive compound class. In addition, we analyze predictive design tools (e.g., PBPK modeling and AI-based formulation), regulatory frameworks (e.g., EFSA, FDA, and GSRS), and risk-driven strategies as underexplored levers to accelerate innovation. The review also integrates ethical and environmental considerations, and highlights emerging trends such as multifunctional hybrid systems and green synthesis routes. Conclusions: By bridging scientific, technological, and regulatory domains, this review offers a novel conceptual and translational roadmap to guide the next generation of biomimetic nutraceutical delivery systems. It addresses key bottlenecks and proposes integrative strategies to enhance design precision, safety, and scalability. Full article
Show Figures

Figure 1

11 pages, 765 KB  
Article
Curcumin Supplementation Improves Gastrointestinal Symptoms in Women with Severe Obesity: A Double-Blind, Randomized, Placebo-Controlled Trial—A Pilot Study
by Fabiana Martins Kattah, Nayra Figueiredo, Kamilla Kenned Bezerra, Emilly Santos Oliveira, Cinara Costa de Melo, Gislene Batista Lima, Jocélia Paula Rocha Cavalcante, Beatriz Bacheschi do Carmo Benetti, Glaucia Carielo Lima, João Felipe Mota and Flávia Campos Corgosinho
Nutrients 2025, 17(13), 2064; https://doi.org/10.3390/nu17132064 - 20 Jun 2025
Viewed by 1776
Abstract
Gastrointestinal symptoms, including reflux, bloating, dyspepsia, stomach pain, and altered bowel patterns, are commonly reported in individuals with severe obesity and may significantly impact quality of life. Background/Objectives: Curcumin, a bioactive compound found in turmeric (Curcuma longa L.), possesses anti-inflammatory and [...] Read more.
Gastrointestinal symptoms, including reflux, bloating, dyspepsia, stomach pain, and altered bowel patterns, are commonly reported in individuals with severe obesity and may significantly impact quality of life. Background/Objectives: Curcumin, a bioactive compound found in turmeric (Curcuma longa L.), possesses anti-inflammatory and antioxidant properties and has been investigated for its potential role in gastrointestinal health. However, its effects in individuals with severe obesity remain unclear. Methods: This double-blind, placebo-controlled clinical trial aimed to evaluate the effect of curcumin supplementation on gastrointestinal symptoms in women with severe obesity. Thirty-one women with a body mass index (BMI) ≥ 40 kg/m2 undergoing bariatric surgery were randomized to receive either 1500 mg of curcumin (98.75%) or a placebo (1500 mg corn starch) daily for 13 weeks. Gastrointestinal symptoms were assessed using the Gastrointestinal Symptom Rating Scale (GSRS), and stool consistency was assessed using the Bristol Stool Scale. Anthropometric measurements were also collected. Results: Participants had an average age of 33.1 ± 8 years and a BMI of 45.6 ± 3.31 kg/m2. No differences were observed between groups at baseline. At the end of the study, the curcumin group showed a significant reduction in the GSRS’s total score compared to the placebo group (p = 0.002), with improvements in eructation (p = 0.011) and constipation (p = 0.007). Additionally, the curcumin group showed reduced BMI (p = 0.019) and neck circumference (p = 0.042). Conclusions: These findings suggest that curcumin supplementation may alleviate some gastrointestinal symptoms and improve anthropometric measures in women with severe obesity, providing a potential dietary strategy. Full article
(This article belongs to the Special Issue Dietary Effects on Gastrointestinal Microbiota and Health)
Show Figures

Graphical abstract

21 pages, 5095 KB  
Article
Molecular Adaptations and Quality Enhancements in a Hybrid (Erythroculter ilishaeformis ♀ × Ancherythroculter nigrocauda ♂) Cultured in Saline–Alkali Water
by Lang Zhang, Qiuying Qin, Qing Li, Yali Yu, Ziwei Song, Li He, Yanhong Sun, Liting Ye, Guiying Wang and Jing Xu
Biology 2025, 14(6), 718; https://doi.org/10.3390/biology14060718 - 18 Jun 2025
Viewed by 658
Abstract
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng [...] Read more.
Declining freshwater resources have spurred interest in saline–alkali (SA) water aquaculture, with species like tilapia and rainbow trout demonstrating ecological plasticity in such environments. However, the molecular mechanisms underlying fish adaptation and quality impacts remain unclear. This study investigated the hybrid fish “Xianfeng No. 1” (Erythroculter ilishaeformis × Ancherythroculter nigrocauda), a key aquaculture species in China, under 60-day SA exposure. The results showed increased levels of oxidative stress markers (MDA) and antioxidant enzymes (SOD, CAT, GSH-Px), alongside improved quality traits. Transcriptomics revealed differentially expressed genes (DEGs) in muscle tissue associated with oxidative stress (UQCRFS1, UQCR10, CYC1), ion transport (COX5A, COX7C, COX7B), and the immune response (ATG9A, ATG2B, ATG2A, ULK1, ULK2, CFI, CFH). Metabolomics identified increased non-volatile flavors (e.g., glycine, proline) and collagen-related compounds. Integrated analysis highlighted the upregulation of GSR and GGT, and the downregulation of CHDH and GBSA, potentially driving glycine accumulation. These findings suggest that SA stress enhances antioxidant capacity, activates immune pathways, and modulates ion transport, enabling adaptation while improving meat quality. This study elucidates molecular mechanisms of fish acclimation to SA environments, providing insights for sustainable aquaculture development and breeding of stress-tolerant species in SA regions. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Graphical abstract

14 pages, 1855 KB  
Article
Oxidative Stress and Apoptotic Markers in Goats Naturally Infected with Mycobacterium avium subsp. paratuberculosis
by Merve Ozturk, Muhammet Bahaeddin Dortbudak, Bayram Bekmez, Lucia Biagini, Nuri Altuğ, Giacomo Rossi, Yasin Ozturk and Alessandro Di Cerbo
Pathogens 2025, 14(6), 593; https://doi.org/10.3390/pathogens14060593 - 16 Jun 2025
Viewed by 724
Abstract
Paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic granulomatous enteritis with significant implications for ruminant health, economic productivity, and potential zoonotic risk. This study investigated the expression of biomarkers of oxidative stress and apoptosis in goats naturally infected with MAP, [...] Read more.
Paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic granulomatous enteritis with significant implications for ruminant health, economic productivity, and potential zoonotic risk. This study investigated the expression of biomarkers of oxidative stress and apoptosis in goats naturally infected with MAP, focusing on three biological matrices: serum, intestinal mucosa, and mesenteric lymph nodes. Twenty MAP-positive goats and ten healthy controls were included. Serum and tissue levels of malondialdehyde (MDA), glutathione S-transferase (GST), glutathione peroxidase (GPX), superoxide dismutase (SOD), glutathione reductase (GSR), and caspase-3 were quantitatively assessed using ELISA tests. Gross and histopathological analyses confirmed MAP infection. Infected animals showed significantly elevated serum levels of MDA and caspase-3 (p < 0.001), along with decreased antioxidant enzyme activities (GSR, GST, GPX, SOD). Tissue analysis revealed increased MDA and caspase-3 levels, particularly in the intestinal mucosa compared to mesenteric lymph nodes, suggesting localized oxidative damage and apoptosis. Conversely, antioxidant enzyme activity was higher in mesenteric lymph nodes, indicating a compensatory response and a pronounced involvement of the intestinal tract. These findings demonstrate that MAP infection induces marked oxidative stress and apoptotic processes, especially in the intestinal mucosa. The imbalance between pro-oxidant and antioxidant systems may play a key role in the pathogenesis and chronic progression of the disease. Caspase-3 and MDA, in particular, have been identified as promising diagnostic or prognostic biomarkers for MAP infection. This study highlights the importance of developing improved diagnostic tools and therapeutic strategies targeting oxidative stress pathways in paratuberculosis. Full article
(This article belongs to the Special Issue Biology of Mycobacterial Pathogens)
Show Figures

Figure 1

15 pages, 2482 KB  
Article
The Molecular Breeding of Different Ecotype Japonica Varieties Resistant to Rice Blast with High Genome Collinearity
by Shengyuan Zeng, Cancan Du, Yihao Yang, Qingfeng Hu, Chuang Li, Fang Feng, Min Guo, Dedao Jing, Tianzi Lin, Hongbing Gong and Changjie Yan
Plants 2025, 14(12), 1836; https://doi.org/10.3390/plants14121836 - 15 Jun 2025
Viewed by 526
Abstract
The Yangtze River Delta (YRD) is one of the most important japonica rice planting areas in China. Balancing the resistance, yield, and quality has always been a core issue in rice breeding due to the negative correlation among these three factors, while the [...] Read more.
The Yangtze River Delta (YRD) is one of the most important japonica rice planting areas in China. Balancing the resistance, yield, and quality has always been a core issue in rice breeding due to the negative correlation among these three factors, while the broad-spectrum blast resistance gene Piz is closely linked with Hd1, the major gene regulating days to heading (DTH), and a precise combination of their beneficial alleles plays a key role in synchronously improving blast resistance and the regional adaptability of japonica rice in YRD. In this study, using the backcross progeny population derived from backbone parent ZD9471 and W1063, two alleles of Hd1 were identified. Then, through molecular marker-assisted selection combined with Green Super Rice 40K (GSR40K) chip-based screening, six introgression lines (ILs) with two different alleles combinations of Hd1 and Pigm were obtained. An evaluation of the blast resistance, yield, and quality traits showed that compared with the recipient parent, the panicle blast resistance of ILs was significantly enhanced; the grain number per panicle increased consistently with the delaying of the growth period, leading to higher yield in the ILs; the grain quality were synchronously improved. Two representative lines with similar genetic backgrounds but a significantly different regional adaptability, exhibiting a good blast resistance, high yield, and prominent quality were approved and demonstrated promising application prospects. Full article
(This article belongs to the Special Issue Functional Genomics and Molecular Breeding of Crops—2nd Edition)
Show Figures

Figure 1

16 pages, 5659 KB  
Article
Identification of Food-Derived Electrophilic Chalcones as Nrf2 Activators Using Comprehensive Virtual Screening Techniques
by Bingyu Bai, Piaohan Tu, Jiayi Weng, Yan Zhang, Quan Lin, Mitchell N. Muskat, Jie Wang, Xue Tang and Xiangrong Cheng
Antioxidants 2025, 14(5), 546; https://doi.org/10.3390/antiox14050546 - 30 Apr 2025
Viewed by 546
Abstract
Electrophilic compounds are bioactive components commonly found in foods that are capable of covalently modifying nucleophilic sites on biologically functional macromolecules. These compounds may elicit positive bioactivity or negative biotoxicity, posing significant challenges in terms of time and resource expenditure in the de [...] Read more.
Electrophilic compounds are bioactive components commonly found in foods that are capable of covalently modifying nucleophilic sites on biologically functional macromolecules. These compounds may elicit positive bioactivity or negative biotoxicity, posing significant challenges in terms of time and resource expenditure in the de novo characterization of their biological activity. In this study, we developed a database of 332 food-derived electrophilic compounds and used a semi-supervised k-nearest neighbors (KNN) machine learning model to predict their bioactivity. Molecular docking analysis identified the three chalcone compounds with the highest potential positive activity—4-hydroxyderricin (4HD), isoliquiritigenin (ISO), and butein. Furthermore, in cell experiments, treatment with 4HD, ISO, and butein significantly reduced reactive oxygen species (ROS) levels. An RT-qPCR analysis demonstrated that these chalcones significantly upregulated the mRNA expression of Nrf2 and its downstream antioxidant genes, including Nqo1, HO-1, Gsr, Gclc, and Gclm. ISO’s cytoprotective and antioxidant effects were abolished following these findings, which highlight that 4HD, ISO, and butein are effective Nrf2 activators and suggest that comprehensive virtual technology is a promising strategy for identifying functional bioactive compounds. Full article
Show Figures

Figure 1

15 pages, 4253 KB  
Article
Whole-Genome DNA Methylation Analysis in Age-Related Hearing Loss
by Marie Valerie Roche, Denise Yan, Yan Guo, Naser Hamad, Juan I. Young, Susan H. Blanton, Feng Gong and Xue Zhong Liu
Genes 2025, 16(5), 526; https://doi.org/10.3390/genes16050526 - 29 Apr 2025
Viewed by 804
Abstract
Background: Presbycusis, also known as age-related hearing loss (ARHL), is the most frequent sensory disability affecting elderly adults worldwide. ARHL is characterized by bilateral, progressive, sensorineural hearing loss that is more pronounced at a high frequency. Conventional factors associated with ARHL include diabetes, [...] Read more.
Background: Presbycusis, also known as age-related hearing loss (ARHL), is the most frequent sensory disability affecting elderly adults worldwide. ARHL is characterized by bilateral, progressive, sensorineural hearing loss that is more pronounced at a high frequency. Conventional factors associated with ARHL include diabetes, hypertension, and a family history of hearing loss. The severity of hearing impairment varies between individuals. The defined causative molecular pathogenesis for ARHL is unknown, thus the identification of underlying pathogenic mechanisms involved in ARHL is imperative for the development of effective therapeutic approaches. Epigenetics is the study of phenotypic changes caused by the modification of gene expression rather than the alteration of a DNA sequence. While it is hypothesized that ARHL could result from undiscovered epigenetic susceptibility, there is a shortage of information on the role that epigenetic modification plays in ARHL. Here we present an investigation on the involvement of DNA methylation in ARHL. Results: Clinical, audiometric and DNA testing, and high-throughput methylation pattern screening were undertaken for ARHL patients and matched control subjects. Our results demonstrate a strong correlation between patients’ hearing measurements and methylation at CpG sites cg1140494 (ESPN) and cg27224823 (TNFRSF25). We identified 136 differentially methylated CpGs that were shared between a high and low audiometric frequency in the patient’s cohort. CpG cites in hearing loss candidate genes, KCNQ1, TMEM43, GSTM1, TCF25, and GSR, were found to be highly methylated in presbycusis patients as compared to the controls. A methylation polymerase chain reaction (PCR) assay was used to confirm methylation levels at a specific gene locus in ARHL patients and controls. Conclusions: Altered DNA methylation and its impact on gene expression has been implicated in many biological processes. By interrogating the methylation status across the genome of both hearing loss patients and those with normal hearing, our study can help to establish an association between the audiometric patterns and methylation status in ARHL, yielding new avenues for the identification of potential candidate genes for hearing loss. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 804 KB  
Article
A Method for Synthesizing Ultra-Large-Scale Clock Trees
by Ziheng Li, Benyuan Chen, Wanting Wang, Hui Lv, Qinghua Lv, Jie Chen, Yan Wang, Juan Li and Cheng Zhang
Algorithms 2025, 18(5), 249; https://doi.org/10.3390/a18050249 - 25 Apr 2025
Viewed by 560
Abstract
As integrated circuit technology continues to advance, clock tree synthesis has become increasingly significant in the design of ultra-large-scale integrated circuits. Traditional clock tree synthesis methods often face challenges such as insufficient computational resources and buffer fan-out limitations when dealing with ultra-large-scale clock [...] Read more.
As integrated circuit technology continues to advance, clock tree synthesis has become increasingly significant in the design of ultra-large-scale integrated circuits. Traditional clock tree synthesis methods often face challenges such as insufficient computational resources and buffer fan-out limitations when dealing with ultra-large-scale clock trees. To address this issue, this paper proposes an improved clock tree synthesis algorithm called incomplete balanced KSR (IB-KSR). Building upon the KSR algorithm, this proposed algorithm efficiently reduces the consumption of computational resources and constrains the fan-out of each buffer by incorporating incomplete minimum spanning tree (IMST) technology and a clustering strategy grounded in Balanced Split. In experiments, the IB-KSR algorithm was compared with the GSR algorithm. The results indicated that IB-KSR reduced the global skew of the clock tree by 43.4% and decreased the average latency by 34.3%. Furthermore, during program execution, IB-KSR maintained low computational resource consumption. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

Back to TopTop