Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Gluconacetobacter tumulisoli FBFS 97

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11899 KB  
Article
Investigation of Eumelanin Biosynthesis in Gluconacetobacter tumulisoli FBFS 97: A Novel Insight into a Bacterial Melanin Producer
by Jiayun Song, Yanqin Ma, Zhenzhen Xie and Fusheng Chen
Microorganisms 2025, 13(3), 480; https://doi.org/10.3390/microorganisms13030480 - 21 Feb 2025
Viewed by 1225
Abstract
Acetic acid bacteria (AAB) are a group of bacteria, most of which can produce pigments. However, the mechanism of pigment production by AAB is unclear. A strain of AAB, Gluconacetobacter tumulisoli FBFS 97, which can produce a large amount of brown pigment (BP), [...] Read more.
Acetic acid bacteria (AAB) are a group of bacteria, most of which can produce pigments. However, the mechanism of pigment production by AAB is unclear. A strain of AAB, Gluconacetobacter tumulisoli FBFS 97, which can produce a large amount of brown pigment (BP), was isolated in our previous research. In the current study, it was found that the BP yield of the FBFS 97 strain was enhanced in the presence of tyrosine, and an intermediate of melanin, L-3,4-dihydroxyphenylalanine (L-DOPA), was identified using ultra-performance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The structural properties of BP were analyzed by pyrolysis gas chromatography–mass spectrometry (Py-GC-MS). All these analyses suggest that BP may be eumelanin, a type of melanin. Then, the eumelanin biosynthetic pathway was investigated in the FBFS 97 strain, and three related genes with eumelanin including pheA, yfiH, and phhB in its genome were found and knocked out, respectively. The results showed that eumelanin production increased 1.3-fold in the pheA deletion mutant compared to the wild-type FBFS 97 strain, but when either yfiH or phhB was knocked out, the eumelanin production in the mutants was the same as that in the wild-type FBFS 97 strain. Finally, a possible biosynthetic pathway for eumelanin in the FBFS 97 strain is proposed. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop