Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (794)

Search Parameters:
Keywords = Google Earth platform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7350 KB  
Article
Mechanisms of Spatial Coupling Between Plantation Species Distribution and Historical Disturbance in the Complex Topography of Eastern Yunnan
by Xiyu Zhang, Chao Zhang and Lianjin Fu
Remote Sens. 2025, 17(17), 2925; https://doi.org/10.3390/rs17172925 - 22 Aug 2025
Viewed by 207
Abstract
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir ( [...] Read more.
Forest disturbance is a major driver shaping the structure and function of plantation ecosystems. Current research predominantly focuses on single forest types or landscape scales. However, species-level fine-scale assessments of disturbance dynamics are still scarce. In this study, we investigated Chinese fir (Cunninghamia lanceolata), Armand pine (Pinus armandii), and Yunnan pine (Pinus yunnanensis) plantations in the mountainous eastern Yunnan Plateau. We developed a Spatial Coupling Framework of Disturbance Legacy (SC-DL) to systematically elucidate the spatial associations between contemporary species distribution patterns and historical disturbance regimes. Using the Google Earth Engine (GEE) platform, we reconstructed pixel-level disturbance trajectories by integrating long-term Landsat time series (1993–2024) and applying the LandTrendr algorithm. By fusing multi-source remote sensing features (Sentinel-1/2) with terrain factors, employing RFE, and performing a multi-model comparison, we generated 10 m-resolution species distribution maps for 2024. Spatial overlay analysis quantified the cumulative proportion of the historically disturbed area and the spatial aggregation patterns of historical disturbances within current species ranges. Key results include the following: (1) The model predicting disturbance year achieved high accuracy (R2 = 0.95, RMSE = 2.02 years, MAE = 1.15 years). The total disturbed area from 1993 to 2024 was 872.7 km2, exhibiting three distinct phases. (2) The random forest (RF) model outperformed other classifiers, achieving an overall accuracy (OA) of 95.17% and a Kappa coefficient (K) of 0.93. Elevation was identified as the most discriminative feature. (3) Significant spatial differentiation in disturbance types emerged: anthropogenic disturbances (e.g., logging and reforestation/afforestation) dominated (63.1% of total disturbed area), primarily concentrated within Chinese fir zones (constituting 70.2% of disturbances within this species’ range). Natural disturbances accounted for 36.9% of the total, with fire dominating within the Yunnan pine range (79.3% of natural disturbances in this zone) and drought prevailing in the Armand pine range (71.3% of natural disturbances in this zone). (4) Cumulative disturbance characteristics differed markedly among species zones: Chinese fir zones exhibited the highest cumulative proportion of disturbed area (42.6%), with strong spatial aggregation. Yunnan pine zones followed (36.5%), exhibiting disturbances linearly distributed along dry–hot valleys. Armand pine zones showed the lowest proportion (20.9%), characterized by sparse disturbances within fragmented, high-altitude habitats. These spatial patterns reflect the combined controls of topographic adaptation, management intensity, and environmental stress. Our findings establish a scientific basis for identifying disturbance-prone areas and inform the development of differentiated precision management strategies for plantations. Full article
Show Figures

Figure 1

18 pages, 7248 KB  
Article
Comparative Performance of Machine Learning Classifiers for Photovoltaic Mapping in Arid Regions Using Google Earth Engine
by Le Zhang, Zhaoming Wang, Hengrui Zhang, Ning Zhang, Tianyu Zhang, Hailong Bao, Haokai Chen and Qing Zhang
Energies 2025, 18(17), 4464; https://doi.org/10.3390/en18174464 - 22 Aug 2025
Viewed by 177
Abstract
With increasing energy demand and advancing carbon neutrality goals, arid regions—key areas for centralized photovoltaic (PV) station development in China—urgently require efficient and accurate remote sensing techniques to support spatial distribution monitoring and ecological impact assessment. Although numerous studies have focused on PV [...] Read more.
With increasing energy demand and advancing carbon neutrality goals, arid regions—key areas for centralized photovoltaic (PV) station development in China—urgently require efficient and accurate remote sensing techniques to support spatial distribution monitoring and ecological impact assessment. Although numerous studies have focused on PV station extraction, challenges remain in arid regions with complex surface features to develop extraction frameworks that balance efficiency and accuracy at a regional scale. This study focuses on the Inner Mongolia Yellow River Basin and develops a PV extraction framework on the Google Earth Engine platform by integrating spectral bands, spectral indices, and topographic features, systematically comparing the classification performance of support vector machine, classification and regression tree, and random forest (RF) classifiers. The results show that the RF classifier achieved a high Kappa coefficient (0.94) and F1 score (0.96 for PV areas) in PV extraction. Feature importance analysis revealed that the Normalized Difference Tillage Index, near-infrared band, and Land Surface Water Index made significant contributions to PV classification, accounting for 10.517%, 6.816%, and 6.625%, respectively. PV stations are mainly concentrated in the northern and southwestern parts of the study area, characterized by flat terrain and low vegetation cover, exhibiting a spatial pattern of “overall dispersion with local clustering”. Landscape pattern indices further reveal significant differences in patch size, patch density, and aggregation level of PV stations across different regions. This study employs Sentinel-2 imagery for regional-scale PV station extraction, providing scientific support for energy planning, land use optimization, and ecological management in the study area, with potential for application in other global arid regions. Full article
Show Figures

Figure 1

21 pages, 4230 KB  
Article
Spatio-Temporal Changes and Driving Mechanisms of the Ecological Quality in the Mountain–River–Sea Regional System: A Case Study of the Southwest Guangxi Karst–Beibu Gulf
by Jinrui Ren, Baoqing Hu, Jinsong Gao, Chunlian Gao, Zhanhao Dang and Shaoqiang Wen
Sustainability 2025, 17(16), 7530; https://doi.org/10.3390/su17167530 - 20 Aug 2025
Viewed by 335
Abstract
This study investigates the spatio-temporal characteristics and driving mechanisms of ecological quality in the mountain–river–sea regional system using the Remote Sensing Ecological Index (RSEI) model, moderate-resolution imaging spectroradiometer (MODIS) data, and the Google Earth Engine (GEE) platform. The analysis, conducted at both the [...] Read more.
This study investigates the spatio-temporal characteristics and driving mechanisms of ecological quality in the mountain–river–sea regional system using the Remote Sensing Ecological Index (RSEI) model, moderate-resolution imaging spectroradiometer (MODIS) data, and the Google Earth Engine (GEE) platform. The analysis, conducted at both the grid and county scales using spatial autocorrelation and geodetector, showed a notable improvement in ecological quality, with the average RSEI value rising from 0.549 in 2000 to 0.627 in 2022. The distribution pattern reveals superior quality in the northwest and inferior quality in central urban cores and coastal zones. Ecological quality exhibited significant spatial clustering, with high–high clusters in karst mountains and low–low clusters in urban and industrial zones. Geodetector analysis identified GDP and population density as dominant factors at the grid scale, and GDP and elevation at the county scale. By quantifying spatio-temporal variations and driving mechanisms of ecological quality across scales, this study provides a solid scientific foundation for regional ecological conservation and sustainable development. Full article
Show Figures

Figure 1

17 pages, 8985 KB  
Article
Assessing Geomorphological Changes and Oil Extraction Impacts in Abandoned Yellow River Estuarine Tidal Flats Using Cloud Coverage in Region of Interest (CCROI) and WDM
by Lianjie Zhang, Jishun Yan, Pan Zhang, Bo Zhao, Xia Lin and Quanming Wang
Appl. Sci. 2025, 15(16), 9097; https://doi.org/10.3390/app15169097 - 18 Aug 2025
Viewed by 180
Abstract
Waterline extraction is a key step in applying the Waterline Detection Method (WDM) to Digital Elevation Model (DEM) generation. Cloud interference remains a major challenge for achieving high-quality extraction of waterlines. This study developed an image filtering method termed “Cloud Coverage in Region [...] Read more.
Waterline extraction is a key step in applying the Waterline Detection Method (WDM) to Digital Elevation Model (DEM) generation. Cloud interference remains a major challenge for achieving high-quality extraction of waterlines. This study developed an image filtering method termed “Cloud Coverage in Region of Interest” (CCROI). By integrating the CCROI method with the Otsu algorithm and noise smoothing techniques, this study enabled high-quality batch and automated extraction of waterlines within the Google Earth Engine (GEE) platform. Using the WDM, DEMs were established to evaluate recent geomorphological changes in the estuarine tidal flats of the abandoned Diaokou Course (ETFADC). The results confirm that the erosional trend of the ETFADC has persisted throughout nearly 50 years of natural adjustment. In areas distant from oil extraction zones, erosion dominates the high-tide zone, while accretion prevails in the low-tide zone, indicating a slope-flattening process. However, in areas near the oil extraction zone, tree-shaped embankments have acted to inhibit erosion rather than exacerbate it, with strong accretion even occurring in wave-sheltered areas. By enhancing the quality of the selected images and reducing the waterline false detection rate, the CCROI method demonstrates significant potential for time-series studies of small regions. Full article
(This article belongs to the Special Issue New Technologies for Observation and Assessment of Coastal Zones)
Show Figures

Figure 1

19 pages, 2569 KB  
Article
CNN-Random Forest Hybrid Method for Phenology-Based Paddy Rice Mapping Using Sentinel-2 and Landsat-8 Satellite Images
by Dodi Sudiana, Sayyidah Hanifah Putri, Dony Kushardono, Anton Satria Prabuwono, Josaphat Tetuko Sri Sumantyo and Mia Rizkinia
Computers 2025, 14(8), 336; https://doi.org/10.3390/computers14080336 - 18 Aug 2025
Viewed by 272
Abstract
The agricultural sector plays a vital role in achieving the second Sustainable Development Goal: “Zero Hunger”. To ensure food security, agriculture must remain resilient and productive. In Indonesia, a major rice-producing country, the conversion of agricultural land for non-agricultural uses poses a serious [...] Read more.
The agricultural sector plays a vital role in achieving the second Sustainable Development Goal: “Zero Hunger”. To ensure food security, agriculture must remain resilient and productive. In Indonesia, a major rice-producing country, the conversion of agricultural land for non-agricultural uses poses a serious threat to food availability. Accurate and timely mapping of paddy rice is therefore crucial. This study proposes a phenology-based mapping approach using a Convolutional Neural Network-Random Forest (CNN-RF) Hybrid model with multi-temporal Sentinel-2 and Landsat-8 imagery. Image processing and analysis were conducted using the Google Earth Engine platform. Raw spectral bands and four vegetation indices—NDVI, EVI, LSWI, and RGVI—were extracted as input features for classification. The CNN-RF Hybrid classifier demonstrated strong performance, achieving an overall accuracy of 0.950 and a Cohen’s Kappa coefficient of 0.893. These results confirm the effectiveness of the proposed method for mapping paddy rice in Indramayu Regency, West Java, using medium-resolution optical remote sensing data. The integration of phenological characteristics and deep learning significantly enhances classification accuracy. This research supports efforts to monitor and preserve paddy rice cultivation areas amid increasing land use pressures, contributing to national food security and sustainable agricultural practices. Full article
(This article belongs to the Special Issue Machine Learning Applications in Pattern Recognition)
Show Figures

Figure 1

19 pages, 34418 KB  
Article
Rapid Flood Mapping and Disaster Assessment Based on GEE Platform: Case Study of a Rainstorm from July to August 2024 in Liaoning Province, China
by Wei Shan, Jiawen Liu and Ying Guo
Water 2025, 17(16), 2416; https://doi.org/10.3390/w17162416 - 15 Aug 2025
Viewed by 256
Abstract
Intensified by climate change and anthropogenic activities, flood disasters necessitate rapid and accurate mapping for effective disaster management. This study develops an integrated framework leveraging synthetic aperture radar (SAR) and cloud computing to enhance flood monitoring, with a focus on a 2024 extreme [...] Read more.
Intensified by climate change and anthropogenic activities, flood disasters necessitate rapid and accurate mapping for effective disaster management. This study develops an integrated framework leveraging synthetic aperture radar (SAR) and cloud computing to enhance flood monitoring, with a focus on a 2024 extreme rainfall event in Liaoning Province, China. Utilizing the Google Earth Engine (GEE) platform, we combine three complementary techniques: (1) Otsu automatic thresholding, for efficient extraction of surface water extent from Sentinel-1 GRD time series (154 scenes, January–October 2024), achieving processing times under 2 min with >85% open-water accuracy; (2) random forest (RF) classification, integrating multi-source features (SAR backscatter, terrain parameters from 30 m SRTM DEM, NDVI phenology) to distinguish permanent water bodies, flooded farmland, and urban areas, attaining an overall accuracy of 92.7%; and (3) Fuzzy C-Means (FCM) clustering, incorporating backscatter ratio and topographic constraints to resolve transitional “mixed-pixel” ambiguities in flood boundaries. The RF-FCM synergy effectively mapped submerged agricultural land and urban spill zones, while the Otsu-derived flood frequency highlighted high-risk corridors (recurrence > 10%) along the riverine zones and reservoir. This multi-algorithm approach provides a scalable, high-resolution (10 m) solution for near-real-time flood assessment, supporting emergency response and sustainable water resource management in affected basins. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 4668 KB  
Article
Attribution and Risk Assessment of Wind Erosion in the Aral Sea Regions Using Multi-Source Remote Sensing and RWEQ on GEE
by Feng Yao, Jianli Ding, Anming Bao and Junli Li
Remote Sens. 2025, 17(16), 2788; https://doi.org/10.3390/rs17162788 - 12 Aug 2025
Viewed by 298
Abstract
The rapid desiccation of the Aral Sea has transformed the region into one of the world’s most severe soil wind-erosion hotspots. Despite growing concern, long-term, high-resolution assessments and driver attribution remain insufficient. This study integrates the Revised Wind Erosion Equation (RWEQ) with multi-source [...] Read more.
The rapid desiccation of the Aral Sea has transformed the region into one of the world’s most severe soil wind-erosion hotspots. Despite growing concern, long-term, high-resolution assessments and driver attribution remain insufficient. This study integrates the Revised Wind Erosion Equation (RWEQ) with multi-source remote sensing data on the Google Earth Engine (GEE) platform to simulate wind erosion dynamics from 1990 to 2020. The residual trend method was used to disentangle the contributions of climate change and human activities, while erosion risk was assessed using the Information Quantity model and Analytic Hierarchy Process (AHP). This study reveals five key findings: (1) wind erosion increased significantly after 2011, peaking in 2015 with an annual growth rate of 2.418 kg/m2. (2) The Aral Sea Basin’s relative contribution to regional erosion declined sharply, indicating a shift in dominant erosion zones to peripheral deserts. (3) Climate change emerged as the primary driver, contributing 70.19% overall, and up to 92.13% in recent years, while human activities showed a peak influence (55.53%) in 2005. (4) Spatial attribution showed climate dominance in desert areas and localized human impact in exposed lakebeds. (5) High-risk erosion zones expanded rapidly into the Kyzylkum Desert after 2010, due to rising wind speeds and vegetation loss. This study provides a robust remote sensing–based framework for wind erosion monitoring and attribution, offering critical insights for erosion mitigation and ecological restoration in arid, climate-sensitive regions. Full article
Show Figures

Graphical abstract

19 pages, 60167 KB  
Article
Mapping Ecosystem Carbon Storage in the Nanling Mountains of Guangdong Province Using Machine Learning Based on Multi-Source Remote Sensing
by Wei Wang, Liangbo Tang, Ying Zhang, Junxing Cai, Xiaoyuan Chen and Xiaoyun Mao
Atmosphere 2025, 16(8), 954; https://doi.org/10.3390/atmos16080954 - 10 Aug 2025
Viewed by 485
Abstract
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This [...] Read more.
Accurate assessment of terrestrial ecosystem carbon storage is essential for understanding the global carbon cycle and informing climate change mitigation strategies. However, traditional estimation models face significant challenges in complex mountainous regions due to difficulties in data acquisition and high ecosystem heterogeneity. This study focuses on the Nanling Mountains in Guangdong Province, China, utilizing the Google Earth Engine (GEE) platform to integrate multi-source remote sensing data (Sentinel-1/2, ALOS, GEDI, MODIS), topographic/climatic variables, and field-collected samples. We employed machine learning models to achieve high-precision prediction and high-resolution mapping of ecosystem carbon storage while also analyzing spatial differentiation patterns. The results indicate that the Random Forest algorithm outperformed Gradient Boosting Decision Tree and Classification and Regression Tree (CART) algorithms by suppressing overfitting through dual randomization. The integration of multi-source data significantly enhanced model performance, achieving a coefficient of determination (R2) of 0.87 for aboveground biomass (AGB) and 0.65 for soil organic carbon (SOC). Integrating precipitation, temperature, and topographic variables improved SOC prediction accuracy by 96.77% compared to using optical data alone. The total carbon storage reached 404 million tons, with forest ecosystems contributing 96.7% of the total and soil carbon pools accounting for 60%. High carbon density zones (>160 Mg C/ha) were mainly concentrated in mid-elevation gentle slopes (300–700 m). The proposed integrated “optical-radar-topography-climate” framework offers a scalable and transferable solution for monitoring carbon storage in complex terrains and provides robust scientific support for carbon sequestration planning in subtropical mountain ecosystems. Full article
Show Figures

Figure 1

24 pages, 3057 KB  
Article
Spatiotemporal Extraction of Aquaculture Ponds Under Complex Surface Conditions Based on Deep Learning and Remote Sensing Indices
by Weirong Qin, Mohd Hasmadi Ismail, Mohammad Firuz Ramli, Junlin Deng and Ning Wu
Sustainability 2025, 17(16), 7201; https://doi.org/10.3390/su17167201 - 8 Aug 2025
Viewed by 293
Abstract
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using [...] Read more.
The extraction of water surfaces and aquaculture targets from remote sensing imagery has been challenging for operations under different regions and conditions, especially since the model parameters must be optimized manually. This study addresses the requirement for large-scale monitoring of global aquaculture using the Google Earth Engine (GEE) platform to extract high-accuracy, long-term data series of water surfaces such as aquaculture ponds. A Composite Water Index (CWI) method is proposed to distinguish water surfaces from non-water surfaces with remote sensing data recorded with Sentinel-2 satellite, thereby minimizing manual intervention in aquaculture management. The CWI approach is implemented based on three index algorithms of remote sensing analysis such as the Water Index (WI), the Modified Normalized Difference Water Index (MNDWI) and the Automated Water Extraction Index with Shadow (AWEIsh). The values of the three index methods are obtained from 1000 grid points extracted with an overlaid map with three layers. A ternary regression method is then introduced to generate the coefficients of CWI. Experimental results show that the classification accuracy of the WI is higher than that of the MNDWI and the AWEIsh, leading to a more significant coefficient weight in the ternary regression. When different numbers of mean distribution points are used to calculate the indices, it is found that the highest R2 value can be achieved when using the coefficient value corresponding to 600 points, and an accuracy of 94% can be achieved by the CWI method for water surface classification. The CWI algorithm can also be used to monitor the change in aquaculture ponds in Johor, Malaysia; it was discovered that the total aquaculture area has expanded by 23.27 km from 2016 to 2023. This study provides a potential means for long-term observation and tracking of changes in aquaculture ponds and water surfaces, as well as water management and water protection. Specifically, the proposed Composite Water Index (CWI) model achieved a mean mIoU of 0.84 and an overall pixel accuracy (oPA) of 0.94, which significantly outperformed WI (mIoU = 0.79), MNDWI (mIoU = 0.75), and AWEIsh (mIoU = 0.77), with p-values < 0.01. These improvements demonstrate the robustness and statistical superiority of the proposed approach in aquaculture pond extraction. Full article
Show Figures

Figure 1

25 pages, 15953 KB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Viewed by 657
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

20 pages, 2731 KB  
Article
Flood Hazard Assessment and Monitoring in Bangladesh: An Integrated Approach for Disaster Risk Mitigation
by Kashfia Nowrin Choudhury and Helmut Yabar
Earth 2025, 6(3), 90; https://doi.org/10.3390/earth6030090 - 5 Aug 2025
Viewed by 708
Abstract
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate [...] Read more.
Floods are among the most devastating hydrometeorological natural disasters worldwide, causing massive infrastructure and economic loss in low-lying, flood-prone developing countries like Bangladesh. Effective disaster mitigation relies on organized and detailed flood damage information to facilitate emergency evacuation, coordinate relief distribution, and formulate an effective disaster management policy. Nevertheless, the nation confronts considerable obstacles due to insufficient historical flood damage data and the underdevelopment of near-real-time (NRT) flood monitoring systems. This study addresses this issue by developing a replicable methodology for flood damage assessment and NRT monitoring systems. Using the Google Earth Engine (GEE) platform, we analyzed flood events from 2019 to 2023, integrating geospatial layers such as roads, cropland, etc. Analysis of flood events over the five-year period revealed substantial impacts, with 21.60% of the total area experiencing inundation. This flooding affected 6.92% of cropland and 4.16% of the population. Furthermore, 18.10% of the road network, spanning over 21,000 km within the study area, was also affected. This system has the potential to enhance emergency response capabilities during flood events and inform more effective disaster mitigation policies. Full article
Show Figures

Figure 1

19 pages, 4452 KB  
Article
Artificial Surface Water Construction Aggregated Water Loss Through Evaporation in the North China Plain
by Ziang Wang, Yan Zhou, Wenge Zhang, Shimin Tian, Yaoping Cui, Haifeng Tian, Xiaoyan Liu and Bing Han
Remote Sens. 2025, 17(15), 2698; https://doi.org/10.3390/rs17152698 - 4 Aug 2025
Viewed by 362
Abstract
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of [...] Read more.
As a typical grain base with a dense population and high-level urbanization, the North China Plain (NCP) faces a serious threat to its sustainable development due to water shortage. Surface water area (SWA) is a key indicator for continuously measuring the trends of regional water resources and assessing their current status. Therefore, a deep understanding of its changing patterns and driving forces is essential for achieving the sustainable management of water resources. In this study, we examined the interannual variability and trends of SWA in the NCP from 1990 to 2023 using annual 30 m water body maps generated from all available Landsat imagery, a robust water mapping algorithm, and the cloud computing platform Google Earth Engine (GEE). The results showed that the SWA in the NCP has significantly increased over the past three decades. The continuous emergence of artificial reservoirs and urban lakes, along with the booming aquaculture industry, are the main factors driving the growth of SWA. Consequently, the expansion of artificial water bodies resulted in a significant increase in water evaporation (0.16 km3/yr). Moreover, the proportion of water evaporation to regional evapotranspiration (ET) gradually increased (0–0.7%/yr), indicating that the contribution of water evaporation from artificial water bodies to ET is becoming increasingly prominent. Therefore, it can be concluded that the ever-expanding artificial water bodies have become a new hidden danger affecting the water security of the NCP through evaporative loss and deserve close attention. This study not only provides us with a new perspective for deeply understanding the current status of water resources security in the NCP but also provides a typical case with great reference value for the analysis of water resources changes in other similar regions. Full article
Show Figures

Figure 1

22 pages, 4300 KB  
Article
Optimised DNN-Based Agricultural Land Mapping Using Sentinel-2 and Landsat-8 with Google Earth Engine
by Nisha Sharma, Sartajvir Singh and Kawaljit Kaur
Land 2025, 14(8), 1578; https://doi.org/10.3390/land14081578 - 1 Aug 2025
Viewed by 663
Abstract
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of [...] Read more.
Agriculture is the backbone of Punjab’s economy, and with much of India’s population dependent on agriculture, the requirement for accurate and timely monitoring of land has become even more crucial. Blending remote sensing with state-of-the-art machine learning algorithms enables the detailed classification of agricultural lands through thematic mapping, which is critical for crop monitoring, land management, and sustainable development. Here, a Hyper-tuned Deep Neural Network (Hy-DNN) model was created and used for land use and land cover (LULC) classification into four classes: agricultural land, vegetation, water bodies, and built-up areas. The technique made use of multispectral data from Sentinel-2 and Landsat-8, processed on the Google Earth Engine (GEE) platform. To measure classification performance, Hy-DNN was contrasted with traditional classifiers—Convolutional Neural Network (CNN), Random Forest (RF), Classification and Regression Tree (CART), Minimum Distance Classifier (MDC), and Naive Bayes (NB)—using performance metrics including producer’s and consumer’s accuracy, Kappa coefficient, and overall accuracy. Hy-DNN performed the best, with overall accuracy being 97.60% using Sentinel-2 and 91.10% using Landsat-8, outperforming all base models. These results further highlight the superiority of the optimised Hy-DNN in agricultural land mapping and its potential use in crop health monitoring, disease diagnosis, and strategic agricultural planning. Full article
Show Figures

Figure 1

28 pages, 6962 KB  
Article
Mapping Drought Incidents in the Mediterranean Region with Remote Sensing: A Step Toward Climate Adaptation
by Aikaterini Stamou, Aikaterini Bakousi, Anna Dosiou, Zoi-Eirini Tsifodimou, Eleni Karachaliou, Ioannis Tavantzis and Efstratios Stylianidis
Land 2025, 14(8), 1564; https://doi.org/10.3390/land14081564 - 30 Jul 2025
Viewed by 1288
Abstract
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are [...] Read more.
The Mediterranean region, identified by scientists as a ‘climate hot spot’, is experiencing warmer and drier conditions, along with an increase in the intensity and frequency of extreme weather events. One such extreme phenomena is droughts. The recent wildfires in this region are a concerning consequence of this phenomenon, causing severe environmental damage and transforming natural landscapes. However, droughts involve a two-way interaction: On the one hand, climate change and various human activities, such as urbanization and deforestation, influence the development and severity of droughts. On the other hand, droughts have a significant impact on various sectors, including ecology, agriculture, and the local economy. This study investigates drought dynamics in four Mediterranean countries, Greece, France, Italy, and Spain, each of which has experienced severe wildfire events in recent years. Using satellite-based Earth observation data, we monitored drought conditions across these regions over a five-year period that includes the dates of major wildfires. To support this analysis, we derived and assessed key indices: the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI). High-resolution satellite imagery processed within the Google Earth Engine (GEE) platform enabled the spatial and temporal analysis of these indicators. Our findings reveal that, in all four study areas, peak drought conditions, as reflected in elevated NDDI values, were observed in the months leading up to wildfire outbreaks. This pattern underscores the potential of satellite-derived indices for identifying regional drought patterns and providing early signals of heightened fire risk. The application of GEE offered significant advantages, as it allows efficient handling of long-term and large-scale datasets and facilitates comprehensive spatial analysis. Our methodological framework contributes to a deeper understanding of regional drought variability and its links to extreme events; thus, it could be a valuable tool for supporting the development of adaptive management strategies. Ultimately, such approaches are vital for enhancing resilience, guiding water resource planning, and implementing early warning systems in fire-prone Mediterranean landscapes. Full article
(This article belongs to the Special Issue Land and Drought: An Environmental Assessment Through Remote Sensing)
Show Figures

Figure 1

20 pages, 8132 KB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 290
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

Back to TopTop