Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (51,217)

Search Parameters:
Keywords = H-H activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 9604 KB  
Article
Beyond Monoculture: A Comparative Analysis of Soil Properties and Grain Quality in Rice-Based Co-Culture Systems
by Yang Xu, Geye Ding, Weiwei Ma, Jiao Yuan, Jing Liu, Ziyu Xie, Junde Guo, Linzhi Ou, Huang Huang, Can Chen and Junhua Li
Biology 2025, 14(9), 1195; https://doi.org/10.3390/biology14091195 (registering DOI) - 4 Sep 2025
Abstract
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil [...] Read more.
Rice-based co-culture systems offer sustainable agricultural benefits, yet stage-specific impacts on soil properties and grain quality remain underexplored. This study presented the first comprehensive assessment of the stage-specific effects under conventional tillage (CTL), rice-chicken (RC), rice-fish (RF), and rice-chicken-fish (RCF) systems on soil fertility, enzymatic activities, microbial communities, and grain quality. Our novel temporally explicit analysis revealed system- and stage-dependent modulation. RCF increased late-season organic matter by 10.4%, while RC consistently enhanced available potassium. Enzymatic activities exhibited distinct temporal shifts, with RF showing peak catalase activity at heading (0.47 mL g−1 30 min−1), RC maintaining consistently higher invertase activity, and both RF and RCF displaying delayed urease peaks at filling (0.38 mg g−1 24 h−1). Microbial communities were significantly restructured (ANOSIM, R2 = 0.694, p < 0.001), with increased network complexity in co-cultures, particularly in RCF (95 nodes, 153 edges). Grain quality improvements included higher milling recovery (2.6–5.3%) in RC and elevated protein content (16.6%) in RF and RCF, along with reduced chalkiness (20–30%) across all co-cultures. Integrative analysis established linkages between soil properties (e.g., pH, organic matter, invertase), microbial taxa (e.g., Nitrospira, Syntrophus), and grain quality attributes. These findings provide mechanistic insights into soil-plant-microbe interactions and support the implementation of stage-specific management strategies for sustainable rice production systems. Full article
(This article belongs to the Section Microbiology)
13 pages, 3271 KB  
Article
One-Step Controlled Electrodeposition Fabrication of Ternary PtNiCo Nanosheets for Electrocatalytic Ammonia–Nitrogen Sensing
by Liang Zhang, Yue Han, Yingying Huang, Jiali Gu, Xinyue Wang and Chun Zhao
Chemosensors 2025, 13(9), 335; https://doi.org/10.3390/chemosensors13090335 - 4 Sep 2025
Abstract
The development of high-performance electrochemical sensors is crucial for ammonia–nitrogen detection. Therefore, in this study, we successfully prepared one ternary PtNiCo nanosheet via the one-step electrodeposition technique. The ratio of H2PtCl6·6H2O, Ni(NO3)2·6H2 [...] Read more.
The development of high-performance electrochemical sensors is crucial for ammonia–nitrogen detection. Therefore, in this study, we successfully prepared one ternary PtNiCo nanosheet via the one-step electrodeposition technique. The ratio of H2PtCl6·6H2O, Ni(NO3)2·6H2O and Co(NO3)2·6H2O and electrodeposition time were controlled. Under optimal conditions, Pt6Ni2Co2-2000 demonstrated outstanding electrocatalytic performance, exhibiting a high oxidation peak current of 45.27 mA and excellent long-term stability, retaining 88.09% of its activity after 12 h. Furthermore, the sensing performance of Pt6Ni2Co2-2000 was evaluated, revealing high sensitivity (10.01 μA μM−1), a low detection limit (0.688 µM), strong anti-interference capability, great reusability, great reproducibility, and remarkable long-term stability. Additionally, recovery tests conducted in tap water, lake water, and seawater yielded highly favorable results. This study demonstrated that designing Pt-based alloys can not only enhance the electrochemical performance of Pt but also serve as an effective strategy for improving electrocatalytic ammonia oxidation and ammonia–nitrogen detection. Full article
(This article belongs to the Section Nanostructures for Chemical Sensing)
Show Figures

Figure 1

15 pages, 701 KB  
Article
Quantitative Analysis of the Components of Rotigotine Prolonged-Release Microspheres for Injection Using Solvent-Suppressed 1H NMR
by Xiaoli Zhou, Zengxin Li, Xue Ni, Wanhui Liu and Lihui Yin
Magnetochemistry 2025, 11(9), 79; https://doi.org/10.3390/magnetochemistry11090079 (registering DOI) - 4 Sep 2025
Abstract
We developed a solvent-suppressed 1H nuclear magnetic resonance (NMR) method for the quantitative analysis of the components of rotigotine prolonged-release microspheres prepared for injection. Dimethyl terephthalate was used as an internal standard and dimethylsulfoxide -d6 as the solvent. The analysis [...] Read more.
We developed a solvent-suppressed 1H nuclear magnetic resonance (NMR) method for the quantitative analysis of the components of rotigotine prolonged-release microspheres prepared for injection. Dimethyl terephthalate was used as an internal standard and dimethylsulfoxide -d6 as the solvent. The analysis was performed using a Bruker Avance III HD 600 MHz NMR spectrometer, employing the noesygppr1d pulse sequence at a controlled temperature of 25 °C. Nuclear magnetic resonance spectra were acquired with a relaxation delay time (D1) of 40 s to simultaneously determine the content of rotigotine and the excipients mannitol and stearic acid in the rotigotine prolonged-release microspheres. Using the proposed approach, we successfully quantified the active pharmaceutical ingredient rotigotine and excipients in the prolonged-release microspheres. This method demonstrated excellent linearity, high precision, and strong repeatability. The solvent-suppressed 1H NMR method developed in this study allows for the simultaneous quantification of rotigotine and the key excipients mannitol and stearic acid in the prolonged-release microspheres. This approach is accurate, simple, efficient, and environmentally friendly. Full article
15 pages, 2489 KB  
Article
In Vitro Evaluation of the Effectiveness of a Commercial Enzymatic Product Against Pseudomonas aeruginosa Biofilms According to the Parameters of Use
by Caroline Le Sénéchal, Yoann Fautras, Caroline Tokarski and Sébastien Vilain
Hygiene 2025, 5(3), 41; https://doi.org/10.3390/hygiene5030041 - 4 Sep 2025
Abstract
Biofilms are the source of numerous issues in the food, pharmaceutical, and production industries, making their control a major component of economic and public health. Among anti-biofilm strategies, enzyme-based products that target the biofilm matrix have proven effectiveness against multiple bacterial species. We [...] Read more.
Biofilms are the source of numerous issues in the food, pharmaceutical, and production industries, making their control a major component of economic and public health. Among anti-biofilm strategies, enzyme-based products that target the biofilm matrix have proven effectiveness against multiple bacterial species. We tested the efficacy of a commercial product, Baso Bionil SL40® (SL40; Stockmeier France, Saint-Jacques de la lande, France), against biofilms of Pseudomonas aeruginosa under various conditions of temperature, concentration, pH, and incubation time. SL40 contains two enzymes: a subtilisin protease and an α-amylase glycosidase. Our results showed that SL40 removed up to 85% of the biofilm biomass compared to tris solutions. SL40’s efficacy was strongly influenced by the presence of the enzymes and both temperature and concentration. Enzymatic activity was maintained from 20 °C to 60 °C and at pH values ranging from 5 to 9, with effective concentrations corresponding to SL40 dilutions from 3/200 to 1/200 in 50 mM tris solutions. Additionally, we observed that the P. aeruginosa biofilm biomass after pH 9 tris solution treatment was twice compared to a H2O washing. Our results confirm the potential of enzymes against biofilms, highlight the need to define optimal application conditions, and support their integration into combined strategies for complete biofilm removal. Full article
Show Figures

Figure 1

18 pages, 1527 KB  
Article
Gene-Level Shift in Response to Synthetic Nitrogen Addition Promotes Larix olgensis (Ussurian Larch) Growth in a Short-Term Field Trial
by Muhammad Jamal Ameer, Yushan Liu, Siyu Yan and Tongbao Qu
Life 2025, 15(9), 1403; https://doi.org/10.3390/life15091403 - 4 Sep 2025
Abstract
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term [...] Read more.
Climate change and injudicious nitrogen addition alter the soil physico-chemical properties and microbial activity in oligotrophic forest soil, which disrupts the nitrogen cycle balance. Nevertheless, recommended fertilizer forms and levels are considered to be crucial for stable nitrogen application. We established a short-term field trial for the first time using a randomized complete block design under the yellow larch forest, with six treatments applied, including urea CO(NH2)2, ammonium chloride NH4Cl, and sodium nitrate NaNO3 at concentrations of 10 and 20 kg N hm−2 yr−1, each extended by three replicates. The gene abundances were measured using quantitative PCR (qPCR), in which the abundance levels of AOA (amoA) and nirS were higher under high CO(NH2)2 2.87 × 1010 copies g−1 dry soil and low NO3 8.82 × 109 copies g−1 dry soil, compared to CK, representing 2.8-fold and 1.5-fold increases, respectively. We found niche partitioning as revealed despite AOA (amoA) increasing in number, AOB (amoA) contributing more to ammonia oxidation while nirS proved opportunistic under stress conditions. This was supported by distinct significant correlations among factors, in which soil urease enzymatic activity (S-UE) was associated with AOA (amoA) and nirK, while AOB (amoA) and nirS positively correlated with NH4+ content and soil potential of hydrogen (pH), respectively. Among the applied treatments, high-level NO3 increased total nitrogen content and had a significant effect on soil N-acetyl-β-d-glucosaminidase (S-NAG) and soil acid protease (S-ACPT) activity. In summary, we observed an increase in Larix olgensis growth with high nitrogen retention. Full article
(This article belongs to the Special Issue Carbon and Nitrogen Cycles in Terrestrial Ecosystems)
Show Figures

Figure 1

17 pages, 1707 KB  
Article
Combined Hesperidin and Gemcitabine Therapy Modulates Apoptosis and Angiogenesis Pathways in ISHIKAWA Human Endometrial Adenocarcinoma Cells
by Yasemin Afşin, İlhan Özdemir, Veysel Toprak, Mehmet Cudi Tuncer and Şamil Öztürk
Medicina 2025, 61(9), 1599; https://doi.org/10.3390/medicina61091599 - 4 Sep 2025
Abstract
Background and Objectives: Endometrial adenocarcinoma is among the most prevalent malignancies of the female reproductive system, and therapeutic options remain limited, particularly in advanced stages. In recent years, natural agents, especially flavonoids, have gained considerable interest for their capacity to enhance the effectiveness [...] Read more.
Background and Objectives: Endometrial adenocarcinoma is among the most prevalent malignancies of the female reproductive system, and therapeutic options remain limited, particularly in advanced stages. In recent years, natural agents, especially flavonoids, have gained considerable interest for their capacity to enhance the effectiveness of chemotherapeutic drugs and modulate tumor-related molecular mechanisms. Hesperidin, a citrus-derived flavonoid, is recognized for its antioxidant and anti-inflammatory effects, while Gemcitabine, a nucleoside analog, is widely used in cancer treatment. Investigating their combined effects on endometrial carcinoma cells could yield novel insights into multimodal therapeutic development. This current study aimed to assess the impact of Hesperidin (Hes) and Gemcitabine (Gem) on ISHIKAWA cells, a human endometrial adenocarcinoma model, with particular attention to pathways associated with hypoxia, angiogenesis, apoptosis, and oxidative stress. Materials and Methods: ISHIKAWA cells were treated with varying concentrations of Hes (50–200 µM) and Gem (10–50 nM), either individually or together, for 24 and 48 h. Cell viability was determined using the MTT assay, while apoptosis was measured by Caspase-3/7 activity and NucBlue nuclear staining. Intracellular reactive oxygen species (ROS) generation was quantified via DCFH-DA fluorescence. Expression levels of HIF-1α, VEGF, Bax, Bcl-2, and Caspase-3 were examined by RT-qPCR. Synergistic interactions were analyzed with the Chou–Talalay combination index. Biological enrichment was further explored using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Results: Both Hes and Gem significantly decreased ISHIKAWA cell viability in a concentration- and time-dependent manner (p < 0.001). The combined treatment induced stronger apoptotic effects, as reflected by increased Caspase-3/7 activity and nuclear morphological changes. RT-qPCR demonstrated upregulation of Bax and Caspase-3, together with downregulation of Bcl-2, HIF-1α, and VEGF. While Hes reduced intracellular ROS, Gem elevated it; their combination produced a balanced oxidative response. All dose combinations displayed strong synergism (CI < 1). GO and KEGG enrichment confirmed the involvement of apoptosis-, angiogenesis-, and hypoxia-related pathways. Conclusions: Co-treatment with Hes and Gem exhibits synergistic anticancer activity in endometrial cancer cells by promoting apoptosis, suppressing angiogenesis- and hypoxia-related gene expression, and modulating oxidative stress. This combined therapeutic approach highlights its potential as a promising adjuvant option, warranting further evaluation in in vivo and translational studies. Full article
(This article belongs to the Special Issue Gynecological and Oncological Diseases in the Aged)
Show Figures

Figure 1

18 pages, 966 KB  
Article
Exploring Germination to Unlock the Nutritional Potential of Sorghum (Sorghum bicolor)
by Sara Margherita Borgonovi, Silvia Marzocchi, Federica Pasini, Alessandra Bordoni, Alberto Barbiroli, Alessandra Marti, Stefania Iametti and Mattia Di Nunzio
Molecules 2025, 30(17), 3622; https://doi.org/10.3390/molecules30173622 - 4 Sep 2025
Abstract
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its [...] Read more.
Thanks to its tolerance to drought, sorghum is a cereal crop that is extensively cultivated in the sub-Saharan region. Its good nutritional value makes it an interesting raw material for the food industry, although several anti-nutritional features pose a challenge to exploiting its full potential. In this study, we evaluated whether the process of germination may represent a way of improving the macro- and micro-molecular profile of sorghum, lowering the content of anti-nutritional factors, and promoting the synthesis of bioactive compounds. Germination for 48 and especially 72 h promoted the hydrolysis of starch and proteins, enhanced antioxidant activity, increased the content of polyphenols, mainly flavonols and flavanones, and promoted the conversion of γ- to α-isomers of tocopherols. At the same time, it significantly reduced the concentration of phytates and linoleic acid, enhancing pepsin activity and contributing to the inaugural examination of the impact of sprouted sorghum on digestive protease activity. These findings could help to promote the utilization of sprouted sorghum as a premium ingredient for food products, providing significant nutritional advantages. Full article
15 pages, 3471 KB  
Article
Identification and Biocontrol of Fusarium oxysporum Affecting Lucky Bamboo (Dracaena sanderiana Hort. ex. Mast.)
by Merve Şenol Kotan
J. Fungi 2025, 11(9), 655; https://doi.org/10.3390/jof11090655 (registering DOI) - 4 Sep 2025
Abstract
Lucky bamboo is an economically crucial ornamental plant worldwide due to its durability, rapid growth capacity, and versatile uses. However, diseases caused by various fungal pathogens negatively affect bamboo production, resulting in yield losses. In the present study, fungal agents causing disease in [...] Read more.
Lucky bamboo is an economically crucial ornamental plant worldwide due to its durability, rapid growth capacity, and versatile uses. However, diseases caused by various fungal pathogens negatively affect bamboo production, resulting in yield losses. In the present study, fungal agents causing disease in Dracaena sanderiana were isolated and evaluated for their pathogenicity. The MF-1 and MF-2 isolates that showed pathogenicity were characterized morphologically and molecularly. Chitinase enzymes were partially purified from four different bacteria and biochemically characterized, and the antifungal activities of these bacteria and chitinases were evaluated. As a result of the diagnosis, both isolates were identified as Fusarium oxysporum with ~99% similarity. It was determined that the partially purified chitinases from Pseudomonas chlororaphis C-37A and Agrobacterium radiobacter A-16 had the highest activity with values of 9.44 and 1.02 EU/mL, respectively. Additionally, the pH and temperature values at which C-37A’s chitinase exhibited optimal activity were determined to be 8 and 30 °C, while those for A-16’s chitinase were found to be pH 4 and 40 °C. After 120 min, C-37A’s chitinase retained 50% of its activity at 90 °C, while A-16’s chitinase retained 80% of its activity at 40 °C. C-37A inhibited the growth of MF-1 and MF-2 by 83% and 75%, respectively. Additionally, the inhibition rates of A-16, Bacillus megaterium M-3, and KBA-10 ranged from 68% to 29%. In chitinase applications, the highest inhibition rates of 28% (MF-1) and 23% (MF-2) were obtained from C-37A chitinase. In conclusion, it was observed that bioagent bacteria provide sustainable biological effects against F. oxysporium in D. Sanderiana, and that the chitinase enzyme purified from these isolates can be used as a biocontrol agent in agriculture, as well as potentially evaluated in various industrial applications. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

17 pages, 4684 KB  
Article
CeO2-Cobalt Ferrite Composite as a Dual-Function Catalyst for Hydrogen Peroxide Decomposition and Organic Pollutants Degradation
by Tetiana Tatarchuk and Volodymyr Kotsyubynsky
Metals 2025, 15(9), 985; https://doi.org/10.3390/met15090985 (registering DOI) - 4 Sep 2025
Abstract
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. [...] Read more.
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. Additionally, the 50Ce-CFO sample was further activated with H2O2 treatment. XRD, FTIR, and SEM analyses confirmed the formation of a spinel phase alongside segregated CeO2, which acts as a grain-growth inhibitor. The increased Ce content promotes particle amorphization. FTIR showed changes in the intensity of the M–O stretching band, indicating Ce-induced bond polarization in the spinel lattice. In H2O2 decomposition tests, the 50Ce-CFO catalyst fully decomposes H2O2 in 160 min, while the activated sample completes it in 125 min. Fenton-like degradation of CR and OTC by untreated and activated 50Ce-CFO sample followed pseudo-first-order kinetics. Catalyst stability was confirmed using post-reaction XRD, FTIR, and SEM analyses. Incorporation of CeO2 into CoFe2O4 refines the crystallite size, increases the BET surface area, and enhances adsorption capacity, while the Ce4+/Ce3+ redox couple promotes reactive oxygen species generation. Owing to this dual structural and catalytic role, the CeO2-CoFe2O4 composites exhibit significantly improved Fenton-like catalytic activity, enabling the efficient degradation of organic pollutants. Full article
(This article belongs to the Section Powder Metallurgy)
22 pages, 3169 KB  
Article
Preliminary Results on Hydrogen Concentration Time Series in Spring Gases from the Pamir–Western Himalayan Syntaxis: Variability and Tectonic Instability
by Jiao Tian, Jingchao Li, Yuwen Wang, Miao He, Shihan Cui, Bingyu Yao, Zhaojun Zeng, Jinyuan Dong, Changhui Ju, Chang Lu and Xiaocheng Zhou
Appl. Sci. 2025, 15(17), 9736; https://doi.org/10.3390/app15179736 (registering DOI) - 4 Sep 2025
Abstract
Identifying reliable geochemical signals that reflect crustal stress evolution remains a major challenge in earthquake monitoring. Spring fluids, due to their deep circulation and rapid response, provide an important window into fault-zone processes. This study presents three years (May 2022–March 2025) of hourly [...] Read more.
Identifying reliable geochemical signals that reflect crustal stress evolution remains a major challenge in earthquake monitoring. Spring fluids, due to their deep circulation and rapid response, provide an important window into fault-zone processes. This study presents three years (May 2022–March 2025) of hourly hydrogen gas (H2) concentration monitoring in spring gases from the Muji Basin on the northern Pamir Plateau, integrated with meteorological and seismic data. H2 concentrations exhibited a stable diurnal pattern, positively correlated with water and air temperatures and negatively correlated with atmospheric pressure. Short-term anomalies during seismically quiet periods may reflect a combination of temperature-dependent solubility effects and transient degassing caused by localized gas accumulation and sudden release under heterogeneous fault and aquifer conditions. During seismically active phases, sustained increases in H2 concentrations were also recorded; however, such anomalies did not consistently precede earthquakes, instead reflecting broader phases of tectonic instability and episodic fault-zone degassing. These findings highlight the potential of long-term H2 monitoring to improve our understanding of the coupling between crustal stress, fluid transport, and degassing processes in tectonically active regions. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 3651 KB  
Article
Integrated Transcriptome and Metabolome Analysis of Mature Stage Sand Pear Fruit Response to High-Temperature Stress
by Yu-Xuan Li, Jia-Bei Cai and Xiao Liu
Plants 2025, 14(17), 2776; https://doi.org/10.3390/plants14172776 - 4 Sep 2025
Abstract
Sand pear is a fruit tree crop with high economic value, widely cultivated in East Asia. However, ripening fruits often suffer from high-temperature stress, which has adverse effects on the quality and yield of the fruit. In this study, we perform high-temperature treatment [...] Read more.
Sand pear is a fruit tree crop with high economic value, widely cultivated in East Asia. However, ripening fruits often suffer from high-temperature stress, which has adverse effects on the quality and yield of the fruit. In this study, we perform high-temperature treatment on mature stage ‘Housui’ pear fruits. The results showed that heat stress decreased fruit firmness and mineral elements, as well as lead to the flesh appearance of watercore. High temperature induces H2O2, MDA, and the antioxidant enzyme activity including SOD, APX, POD, and CAT were significantly increased. Transcriptome and metabolomic analyses revealed that heat stress up-regulated genes related to sucrose synthesis (SPS) while down-regulating those involved in sucrose degradation (SS and NI), resulting in sucrose accumulation. Moreover, the expression of sorbitol dehydrogenase (SDH) and sorbitol transporter (SOT) genes was markedly suppressed, leading to sorbitol accumulation and impaired transport, which promoted watercore development. High temperature also stimulated the expression of ethylene synthesis genes, accelerating abnormal ripening of fruits. In addition, high temperature decreased the accumulation of organic acid and bioactive compounds. Additionally, several antioxidant enzymes genes, five heat shock transcription factors (HSFs) and 34 heat shock protein (HSP) genes were significantly up-regulated. Together, these findings provided new insights into the transcriptional response and metabolomic reprogramming of sand pear response to high-temperature stress. Full article
23 pages, 7670 KB  
Article
Biogenic Synthesis of Gold Nanoparticles Using Scabiosa palaestina Extract: Characterization, Anticancer and Antioxidant Activities
by Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra and Elias Baydoun
Nanomaterials 2025, 15(17), 1368; https://doi.org/10.3390/nano15171368 - 4 Sep 2025
Abstract
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, [...] Read more.
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV–visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04  ±  1.8% for 22Rv1 and 17.48  ±  8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications. Full article
Show Figures

Graphical abstract

31 pages, 22552 KB  
Article
Comparative Analysis of Chemical Activators and Expansive Agents for Aeolian Sand Stabilization Using Industrial Solid Waste-Based Geopolymers
by Zilu Xie, Zengzhen Qian, Xianlong Lu, Hao Wang and Phatyoufy Lai
Gels 2025, 11(9), 713; https://doi.org/10.3390/gels11090713 (registering DOI) - 4 Sep 2025
Abstract
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength [...] Read more.
Aeolian sand is the primary geological material for construction in desert regions, and its stabilization with industrial solid wastes-based geopolymer (ISWG) provides an eco-friendly treatment replacing cement. This study comparatively investigated the enhancement effects of chemical activators and expansive agents on compressive strength of aeolian sand stabilized by ISWG (ASIG). Three chemical activators—NaOH, Ca(OH)2, and CaCl2—along with two expansive agents—desulfurized gypsum and bentonite—were considered. Through X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, mercury intrusion porosimetry and pH values tests, the enhancement mechanisms of the additives on ASIG were elucidated. Results demonstrate that the expansive agent exhibits significantly superior strengthening effects on ASIG compared to the widely applied chemical activators. Chemical activators promoted ISWs dissolution and hydration product synthesis, thereby densifying the hydration product matrix but concurrently enlarged interparticle pores. Desulfurized gypsum incorporation induced morphological changes in ettringite, and excessive desulfurized gypsum generated substantial ettringite that disrupted gel matrix. In contrast, bentonite demonstrated superior pore-filling efficacy while densifying gel matrix through a compaction effect. These findings highlight bentonite superior compatibility with the unique microstructure of aeolian sand compared to conventional alkaline activators or expansive agents, and better effectiveness in enhancing the strength of ASIG. Full article
(This article belongs to the Special Issue Development and Applications of Advanced Geopolymer Gel Materials)
Show Figures

Figure 1

41 pages, 6340 KB  
Review
Synthesis and Biological Activity of 5-Substituted-2,4-dihydro-1,2,4-triazole-3-thiones and Their Derivatives
by Abdukhakim A. Ziyaev, Sobirdjan A. Sasmakov, Turdibek T. Toshmurodov, Jaloliddin M. Abdurakhmanov, Saidazim A. Ikramov, Shukhrat Sh. Khasanov, Oybek N. Ashirov, Mavluda A. Ziyaeva and Dilrabo B. Begimqulova
Organics 2025, 6(3), 41; https://doi.org/10.3390/org6030041 - 4 Sep 2025
Abstract
Derivatives of 1,2,4-triazole-3-thione exhibit a variety of biological activities, including antimicrobial (e.g., compounds 31dk, 32d, 36f), antitumor (e.g., 71, 77ac, 82g, 94h), anti-inflammatory, analgesic (100a, 102, 105), antidiabetic, [...] Read more.
Derivatives of 1,2,4-triazole-3-thione exhibit a variety of biological activities, including antimicrobial (e.g., compounds 31dk, 32d, 36f), antitumor (e.g., 71, 77ac, 82g, 94h), anti-inflammatory, analgesic (100a, 102, 105), antidiabetic, and antioxidant (104, 138) activity. These compounds can be efficiently synthesized by classical methods (e.g., cyclization of thiosemicarbazides) and/or modern “green” approaches, which allow for obtaining target compounds in high yields (up to 96%). The presence of electron-donating groups (e.g., -OH, -OCH3) enhances antimicrobial and antitumor activity. Substituents in the aromatic ring (e.g., NO2, Cl) affect the ability to bind to biological targets such as DNA or enzymes. 1,2,4-triazole-3-thiones can also be used as fungicides and herbicides (e.g., 131), demonstrating high efficiency against phytopathogens. Thus, 1,2,4-triazole-3-thione derivatives are multifunctional compounds with high potential for the development of new drugs and agrochemicals. Their further study and modification can lead to the creation of more effective and safer drugs. Full article
Show Figures

Figure 1

23 pages, 5821 KB  
Article
Physiological and Transcriptional Regulation of Salt Tolerance in Thinopyrum ponticum and Screening of Salt-Tolerant Candidate Genes
by Ran Zhang, Rui Zhong, Kuiju Niu, Fang Jia, Yuehan Liu and Xiaoxia Li
Plants 2025, 14(17), 2771; https://doi.org/10.3390/plants14172771 - 4 Sep 2025
Abstract
The tall wheatgrass Thinopyrum ponticum has excellent saline–alkali tolerance and great potential for restoring saline–alkali land to enhance productivity. This study used the Thinopyrum ponticum cv. “Orbit” variety, which is widely planted in saline–alkali pastures, as the material and artificially simulated salt stress [...] Read more.
The tall wheatgrass Thinopyrum ponticum has excellent saline–alkali tolerance and great potential for restoring saline–alkali land to enhance productivity. This study used the Thinopyrum ponticum cv. “Orbit” variety, which is widely planted in saline–alkali pastures, as the material and artificially simulated salt stress using 150 mM NaCl and 150 mM Na2SO4, respectively. The growth and physiological indexes of the leaves and roots of seedlings were measured after various treatment durations, and the transcriptomes of untreated and Na2SO4-treated leaves and roots were also analyzed after 24 h of treatment. The results showed that salt stress resulted in significant reductions in leaf relative water content in seedlings and inhibited root elongation growth, with Na2SO4 treatment producing a greater impact on plant growth than NaCl treatment. Salt stress significantly alters ion transport and distribution in Thinopyrum ponticum, characterized by pronounced Na+ accumulation and a concomitant decline in K+ uptake. Additionally, to adapt to salt stress, roots enhance their ability to absorb and transport essential cations, such as Ca2+, Mg2+, Fe3+, and Cu2+. RNA-Seq analysis identified 1682 and 2816 differentially expressed genes (DEGs) in leaves and roots under Na2SO4 stress, respectively, with 210 common DEGs. Enrichment analyses revealed that DEGs were primarily associated with redox homeostasis, ion balance, and signal transduction. Furthermore, transcription regulation analysis indicated the Thinopyrum ponticum can coordinate the activation of NAC/MYB/WRKY transcription factors, SA/ETH hormone signaling, and Ca2+ pathways in response to salt stress. In summary, this study systematically reveals for the first time the molecular mechanisms by which Thinopyrum ponticum responds to Na2SO4 stress through coordinated regulation of ion transport, transcription factor networks, and hormone-Ca2+ signaling pathways. Based on transcriptomic and protein–protein interaction analyses, nine key candidate genes for saline–alkali tolerance were identified, including UGT7472, JMT, T4E14.7, CAX5, CP1, PXG2 NAMT1, BON3, and APX7. These findings provide novel genetic resources and a theoretical foundation for breeding salt–alkali-tolerant crops. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
Show Figures

Figure 1

Back to TopTop