Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = HEDE mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10122 KB  
Article
Effect of Copper Alloying on Hydrogen Embrittlement of Fe-28Mn-10Al-1C Austenitic Low-Density Steel
by Jiahao Gu, Sifan Jiang, Yanfei Qi, Xiqiang Ren and Yungang Li
Materials 2025, 18(17), 4139; https://doi.org/10.3390/ma18174139 - 4 Sep 2025
Viewed by 327
Abstract
This study investigated the hydrogen embrittlement behavior of Fe-28Mn-10Al-1C-(0,3) Cu austenitic low-density steels after hydrogen charging. Electrochemical hydrogen charging and thermal desorption spectroscopy (TDS) were employed to characterize hydrogen desorption behavior and identify hydrogen trap types in cold-rolled (LZ) and annealed (TH) conditions. [...] Read more.
This study investigated the hydrogen embrittlement behavior of Fe-28Mn-10Al-1C-(0,3) Cu austenitic low-density steels after hydrogen charging. Electrochemical hydrogen charging and thermal desorption spectroscopy (TDS) were employed to characterize hydrogen desorption behavior and identify hydrogen trap types in cold-rolled (LZ) and annealed (TH) conditions. Uniaxial tensile tests were conducted to obtain mechanical properties and the hydrogen embrittlement index (HEI), enabling quantitative evaluation of hydrogen embrittlement susceptibility. Fracture surface morphology was analyzed to elucidate the underlying embrittlement mechanisms. Results indicate that annealing treatment and Cu addition have negligible effects on the activation energy of reversible hydrogen traps, suggesting similar trap types. The reversible hydrogen content decreased by 0.1 wt.ppm and 0.2 wt.ppm in LZ-3Cu and TH-3Cu, respectively, compared to their Cu-free counterparts, indicating that Cu addition mitigates the accumulation of reversible hydrogen. Annealed specimens exhibited lower HEI values, with the HEI of TH-0Cu decreasing from 21.3% to 13.5% and that of TH-3Cu reaching only 9.6%. Fracture mode transitioned from mixed brittle-ductile to fully ductile with Cu alloying, accompanied by a shift from the coupled the Hydrogen-Enhanced Decohesion (HEDE) and the Hydrogen-Enhanced Localized Plasticity (HELP) mechanism to the HELP-dominated mechanism. Collectively, these findings demonstrate that Cu alloying significantly enhances the resistance of austenitic low-density steels to hydrogen embrittlement. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 1470 KB  
Article
Multiscale Modeling and Analysis of Hydrogen-Enhanced Decohesion Across Block Boundaries in Low-Carbon Lath Martensite
by Ivaylo H. Katzarov
Metals 2025, 15(6), 660; https://doi.org/10.3390/met15060660 - 13 Jun 2025
Viewed by 458
Abstract
Low-carbon lath martensite is highly susceptible to hydrogen embrittlement due to the presence of a high density of lath/block boundaries. In this study, I employ a continuum decohesion model to investigate the effects of varying hydrogen concentrations and tensile loads on the cohesive [...] Read more.
Low-carbon lath martensite is highly susceptible to hydrogen embrittlement due to the presence of a high density of lath/block boundaries. In this study, I employ a continuum decohesion model to investigate the effects of varying hydrogen concentrations and tensile loads on the cohesive strength of low- and high-angle block boundaries. The thermodynamic properties of the cohesive zone are described using excess variables, which establish a link between atomistic energy calculations and the continuum model for gradual decohesion at a grain boundary. The aim of this study is to develop an in-depth understanding of how hydrogen affects the cohesive strength of block boundaries in a lath martensitic structure by integrating continuum and atomistic computational modeling and to apply the resulting insights to investigate the effects of varying hydrogen concentrations and tensile loads on interface decohesion. I incorporate hydrogen mobility and segregation at low- and high-angle twist boundaries in body-centered cubic (bcc) Fe to quantify the hydrogen-induced effects on progressive decohesion under tensile stress. A constant hydrogen flux through the free surfaces of a bicrystal containing a block boundary is imposed to simulate realistic boundary conditions. The results of the simulations show that, in the presence of hydrogen flux, separation across the block boundaries occurs at a tensile load significantly lower than the critical stress required for rupture in a hydrogen-free lath martensitic structure. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Graphical abstract

19 pages, 3755 KB  
Article
Study on Hydrogen Embrittlement Behavior of X65 Pipeline Steel in Gaseous Hydrogen Environment
by Linlin Yu, Hui Feng, Shengnan Li, Zhicheng Guo and Qiang Chi
Metals 2025, 15(6), 596; https://doi.org/10.3390/met15060596 - 27 May 2025
Viewed by 1053
Abstract
Pipeline steel is highly susceptible to hydrogen embrittlement (HE) in hydrogen environments, which compromises its structural integrity and operational safety. Existing studies have primarily focused on the degradation trends of mechanical properties in hydrogen environments, but there remains a lack of quantitative failure [...] Read more.
Pipeline steel is highly susceptible to hydrogen embrittlement (HE) in hydrogen environments, which compromises its structural integrity and operational safety. Existing studies have primarily focused on the degradation trends of mechanical properties in hydrogen environments, but there remains a lack of quantitative failure prediction models. To investigate the failure behavior of X65 pipeline steel under hydrogen environments, this paper utilized notched round bar specimens with three different radii and smooth round bar specimens to examine the effects of pre-charging time, the coupled influence of stress triaxiality and hydrogen concentration, and the coupled influence of strain rate and hydrogen concentration on the HE sensitivity of X65 pipeline steel. Fracture surface morphologies were characterized using scanning electron microscopy (SEM), revealing that hydrogen-enhanced localized plasticity (HELP) dominates failure mechanisms at low hydrogen concentrations, while hydrogen-enhanced decohesion (HEDE) becomes dominant at high hydrogen concentrations. The results demonstrate that increasing stress triaxiality or decreasing strain rate significantly intensifies the HE sensitivity of X65 pipeline steel. Based on the experimental findings, failure prediction models for X65 pipeline steel were developed under the coupled effects of hydrogen concentration and stress triaxiality as well as hydrogen concentration and strain rate, providing theoretical support and mathematical models for the engineering application of X65 pipeline steel in hydrogen environments. Full article
Show Figures

Figure 1

20 pages, 4561 KB  
Article
Effect of Hydrogen Content on the Microstructure, Mechanical Properties, and Fracture Mechanism of Low-Carbon Lath Martensite Steel
by Boris Yanachkov, Yana Mourdjeva, Kateryna Valuiska, Vanya Dyakova, Krasimir Kolev, Julieta Kaleicheva, Rumyana Lazarova and Ivaylo Katzarov
Metals 2024, 14(12), 1340; https://doi.org/10.3390/met14121340 - 26 Nov 2024
Cited by 4 | Viewed by 1228
Abstract
The effect of hydrogen content on the microstructure, mechanical properties, and fracture mechanisms of low-carbon lath martensitic steel was investigated using both experimental methods and atomistic modeling. Tensile testing revealed a transition in the fracture behavior with increases in hydrogen concentration. Specifically, at [...] Read more.
The effect of hydrogen content on the microstructure, mechanical properties, and fracture mechanisms of low-carbon lath martensitic steel was investigated using both experimental methods and atomistic modeling. Tensile testing revealed a transition in the fracture behavior with increases in hydrogen concentration. Specifically, at a hydrogen content of 0.44 wppm, a shift from transgranular to intergranular fractures was observed. The most probable cause of hydrogen embrittlement was identified to be HELP-mediated HEDE. As the hydrogen concentration increased, the dislocation density in close-packed planes, such as (111) and (100), was found to rise. The key differences between the hydrogen-free and hydrogen-charged specimens were the localization and density of dislocations, as well as the change in the distribution of slip bands. Atomistic modeling supported these experimental findings, showing that “quasi-cleavage” cracks predominantly initiate at block boundaries with higher local hydrogen accumulation. These results underscore the significant role of hydrogen in modifying both the microstructural characteristics and fracture behavior of low-carbon martensitic steel, with important implications for its performance in hydrogen-rich environments. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Metals: Behaviors and Mechanisms)
Show Figures

Figure 1

9 pages, 4028 KB  
Article
Hydrogen Embrittlement Behavior of API X70 Linepipe Steel under Ex Situ and In Situ Hydrogen Charging
by Dong-Kyu Oh, Sang-Gyu Kim, Seung-Hyeok Shin and Byoungchul Hwang
Materials 2024, 17(19), 4887; https://doi.org/10.3390/ma17194887 - 5 Oct 2024
Cited by 5 | Viewed by 2030
Abstract
This study investigates the hydrogen embrittlement behavior of API X70 linepipe steel. The microstructure was primarily composed of a dislocation-rich bainitic microstructure and polygonal ferrite. Slow strain-rate tests (SSRTs) were performed under both ex situ and in situ electrochemical hydrogen charging conditions to [...] Read more.
This study investigates the hydrogen embrittlement behavior of API X70 linepipe steel. The microstructure was primarily composed of a dislocation-rich bainitic microstructure and polygonal ferrite. Slow strain-rate tests (SSRTs) were performed under both ex situ and in situ electrochemical hydrogen charging conditions to examine the difference between hydrogen diffusion and trapping behaviors. The ex situ SSRTs showed almost the same tensile properties as air and a limited brittle fracture confined to near the surface. In contrast, the in situ SSRTs showed an abrupt failure after the maximum tensile load, leading to a brittle fracture across the entire fracture surface with stress-oriented hydrogen-induced cracking (SOHIC). The crack trace analysis results indicated that SOHIC propagation paths were influenced by localized hydrogen accumulation due to high-stress fields. As a result, the dominant hydrogen embrittlement mechanisms, such as hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE), changed. These findings provide critical insights into the microstructural factors affecting hydrogen embrittlement, which are essential for the design of hydrogen-resistant steels in hydrogen infrastructure applications. Full article
Show Figures

Figure 1

21 pages, 7136 KB  
Article
Investigating the Fatigue Response of Cathodically Charged Cold-Finished Mild Steel to Varied Hydrogen Concentrations
by Emmanuel Sey and Zoheir N. Farhat
Corros. Mater. Degrad. 2024, 5(3), 406-426; https://doi.org/10.3390/cmd5030018 - 9 Sep 2024
Cited by 2 | Viewed by 1645
Abstract
This study investigates the fatigue behavior of cold-finished mild steel subjected to electrochemical hydrogen charging under controlled conditions. Samples were subjected to hydrogen charging at constant time in a fixed electrolyte pH, after which the samples underwent fatigue testing under constant loading condition [...] Read more.
This study investigates the fatigue behavior of cold-finished mild steel subjected to electrochemical hydrogen charging under controlled conditions. Samples were subjected to hydrogen charging at constant time in a fixed electrolyte pH, after which the samples underwent fatigue testing under constant loading condition with fixed frequency. The primary objective was to assess the impact of varying hydrogen permeation levels on the number of cycles to failure. The experimental results revealed a complex relationship between hydrogen concentration and fatigue life. Initially, as hydrogen permeation increased, the number of cycles to failure substantially decreased, demonstrating the detrimental effect of diffused hydrogen on the fatigue resistance of samples. This decline in fatigue life was attributed to hydrogen embrittlement (HE) and hydrogen-enhanced decohesion (HEDE) phenomena, which collectively facilitate crack initiation and propagation. However, at high hydrogen concentrations, an unexpected increase in the number of cycles to failure was observed suggesting the existence of a threshold hydrogen concentration beyond which the fatigue mechanisms may be altered, potentially due to a saturation of hydrogen-related defects and mechanisms such as hydrogen-enhanced localized plasticity (HELP). The discovery from this research has significant implications for the material’s application in hydrogen-rich environments, such as those encountered in the energy and transportation industries. Full article
(This article belongs to the Special Issue Hydrogen Embrittlement of Modern Alloys in Advanced Applications)
Show Figures

Figure 1

11 pages, 4338 KB  
Article
Hydrogen Embrittlement Behavior of a Commercial QP980 Steel
by Linlin Zhao, Cheng Ma, Aimin Zhao, Yuheng Fan and Zhiqiang Li
Metals 2023, 13(8), 1469; https://doi.org/10.3390/met13081469 - 15 Aug 2023
Cited by 5 | Viewed by 1977
Abstract
The hydrogen embrittlement (HE) behavior of a commercial QP980 steel is studied in this work. The HE susceptibility results indicate that QP980 suffers from a severe HE, and the fracture mode transforms from ductile dimpling to brittle quasi-cleavage under the attack of hydrogen. [...] Read more.
The hydrogen embrittlement (HE) behavior of a commercial QP980 steel is studied in this work. The HE susceptibility results indicate that QP980 suffers from a severe HE, and the fracture mode transforms from ductile dimpling to brittle quasi-cleavage under the attack of hydrogen. The EBSD results show that strain-induced martensite transformation can rarely occur at a strain close to the HE fracture strain, which is mainly attributed to the high mechanical stability of austenite. The TKD-KAM analysis results indicate that hydrogen-induced strain localization in martensite can be mitigated by the hydrogen-trapping effect of surrounding austenite, while it is most pronounced in martensite adjacent to ferrite. Correspondingly, HE cracking is considered to initiate in martensite adjacent to ferrite under the synergistic action of HELP and HEDE mechanisms, and then cracks can propagate through ferrite or along phase interfaces. Our findings suggest that to further improve the HE resistance of QP steel with stable austenite, it is necessary to consider introducing effective hydrogen-trapping sites (such as carbides, film austenite) into martensite, which is deemed to be beneficial for increasing the resistance against hydrogen-induced cracking initiation in martensite. Full article
(This article belongs to the Special Issue Environmentally-Assisted Degradation of Metals and Alloys)
Show Figures

Figure 1

18 pages, 4873 KB  
Article
Analysis of Hydrogen-Assisted Brittle Fracture Using Phase-Field Damage Modelling Considering Hydrogen Enhanced Decohesion Mechanism
by Yunlong Li and Keshi Zhang
Metals 2022, 12(6), 1032; https://doi.org/10.3390/met12061032 - 17 Jun 2022
Cited by 14 | Viewed by 3271
Abstract
This study proposes a hydrogen-assisted fracture analysis methodology considering associated deformation and hydrogen transport inside a phase-field-based formulation. First, the hydrogen transport around a crack tip is calculated, and then the effect of hydrogen enhanced decohesion (HEDE) is modeled by defining the critical [...] Read more.
This study proposes a hydrogen-assisted fracture analysis methodology considering associated deformation and hydrogen transport inside a phase-field-based formulation. First, the hydrogen transport around a crack tip is calculated, and then the effect of hydrogen enhanced decohesion (HEDE) is modeled by defining the critical energy release rate as a function of hydrogen concentration. The proposed method is based on a coupled hydrogen mechanical damage under phase-field and implemented through a user subroutine in ABAQUS software. The test using compact tension (CT) sample is investigated numerically to study the hydrogen embrittlement on 45CrNiMoVA steel. Experimentally, the microstructural fracture presents a mixed brittle fracture mode, consisting of quasi-cleavage (QC) and intergranular (IG) fracture with hydrogen. This fracture mode is consistent with the suggested HEDE mechanism in the model. The simulation results show that hydrogen accumulates at the crack tip where positive hydrostatic stress is located. Moreover, the model estimates the initial hydrogen concentration through iterations. The simulated load-line displacement curves show good agreement with the experimental plots, demonstrating the predictive capabilities of the presented scheme. Full article
Show Figures

Figure 1

18 pages, 6462 KB  
Article
Hydrogen Embrittlement of CoCrFeMnNi High-Entropy Alloy Compared with 304 and IN718 Alloys
by Zheng Feng, Xinfeng Li, Xiaolong Song, Tang Gu and Yong Zhang
Metals 2022, 12(6), 998; https://doi.org/10.3390/met12060998 - 10 Jun 2022
Cited by 17 | Viewed by 4380
Abstract
The hydrogen embrittlement (HE) behaviors of a CoCrFeMnNi high-entropy alloy (HEA), 304 stainless steel (304SS) and IN718 alloys were studied and compared via electrochemical hydrogen pre-charging, slow strain rate tensile tests, and fracture surface analysis. The results demonstrate that the HEA exhibited the [...] Read more.
The hydrogen embrittlement (HE) behaviors of a CoCrFeMnNi high-entropy alloy (HEA), 304 stainless steel (304SS) and IN718 alloys were studied and compared via electrochemical hydrogen pre-charging, slow strain rate tensile tests, and fracture surface analysis. The results demonstrate that the HEA exhibited the greatest HE-resistance, followed by 304SS and then IN718 alloy, when the alloys were charged at 1.79 mA cm−2 for 24 h and 48 h, and 179 mA cm−2 for 2 h. Hydrogen-induced reduction in ductility was observed for 304SS and IN718 alloys, whereas the hydrogen-affected fracture strain of the HEA was dependent on the hydrogen charging time. The resistance to HE was improved at a short hydrogen charging time (24 h), but reduced at a long charging time (48 h). This is attributed to the competing mechanisms between hydrogen-enhanced twin formation and HEDE (hydrogen-enhanced decohesion). Full article
(This article belongs to the Section Metal Failure Analysis)
Show Figures

Figure 1

21 pages, 6247 KB  
Article
Hydrogen-Assisted Brittle Fracture Behavior of Low Alloy 30CrMo Steel Based on the Combination of Experimental and Numerical Analyses
by Yunlong Li, Keshi Zhang, Damin Lu and Bin Zeng
Materials 2021, 14(13), 3711; https://doi.org/10.3390/ma14133711 - 2 Jul 2021
Cited by 13 | Viewed by 3341
Abstract
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged, and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement [...] Read more.
Compact-tension (CT) specimens made of low alloy 30CrMo steels were hydrogen-charged, and then subjected to the fracture toughness test. The experimental results revealed that the higher crack propagation and the lower crack growth resistance (CTOD-R curve) are significantly noticeable with increasing hydrogen embrittlement (HE) indexes. Moreover, the transition in the microstructural fracture mechanism from ductile (microvoid coalescence (MVC)) without hydrogen to a mixed quasi-cleavage (QC) fracture and QC + intergranular (IG) fracture with hydrogen was observed. The hydrogen-enhanced decohesion (HEDE) mechanism was characterized as the dominant HE mechanism. According to the experimental testing, the coupled problem of stress field and hydrogen diffusion field with cohesive zone stress analysis was employed to simulate hydrogen-assisted brittle fracture behavior by using ABAQUS software. The trapezoidal traction-separation law (TSL) was adopted, and the initial TSL parameters from the best fit to the load-displacement and J-integral experimental curves without hydrogen were calibrated for the critical separation of 0.0393 mm and the cohesive strength of 2100 MPa. The HEDE was implemented through hydrogen influence in the TSL, and to estimate the initial hydrogen concentration based on matching numerical and experimental load-line displacement curves with hydrogen. The simulation results show that the general trend of the computational CTOD-R curves corresponding to initial hydrogen concentration is almost the same as that obtained from the experimental data but in full agreement, the computational CTOD values being slightly higher. Comparative analysis of numerical and experimental results shows that the coupled model can provide design and prediction to calculate hydrogen-assisted fracture behavior prior to extensive laboratory testing, provided that the material properties and properly calibrated TSL parameters are known. Full article
Show Figures

Figure 1

16 pages, 3129 KB  
Article
Hydrogen Embrittlement at Cleavage Planes and Grain Boundaries in Bcc Iron—Revisiting the First-Principles Cohesive Zone Model
by Abril Azócar Guzmán, Jeongwook Jeon, Alexander Hartmaier and Rebecca Janisch
Materials 2020, 13(24), 5785; https://doi.org/10.3390/ma13245785 - 18 Dec 2020
Cited by 21 | Viewed by 3409
Abstract
Hydrogen embrittlement, which severely affects structural materials such as steel, comprises several mechanisms at the atomic level. One of them is hydrogen enhanced decohesion (HEDE), the phenomenon of H accumulation between cleavage planes, where it reduces the interplanar cohesion. Grain boundaries are expected [...] Read more.
Hydrogen embrittlement, which severely affects structural materials such as steel, comprises several mechanisms at the atomic level. One of them is hydrogen enhanced decohesion (HEDE), the phenomenon of H accumulation between cleavage planes, where it reduces the interplanar cohesion. Grain boundaries are expected to play a significant role for HEDE, since they act as trapping sites for hydrogen. To elucidate this mechanism, we present the results of first-principles studies of the H effect on the cohesive strength of α-Fe single crystal (001) and (111) cleavage planes, as well as on the Σ5(310)[001] and Σ3(112)[11¯0] symmetrical tilt grain boundaries. The calculated results show that, within the studied range of concentrations, the single crystal cleavage planes are much more sensitive to a change in H concentration than the grain boundaries. Since there are two main types of procedures to perform ab initio tensile tests, different in whether or not to allow the relaxation of atomic positions, which can affect the quantitative and qualitative results, these methods are revisited to determine their effect on the predicted cohesive strength of segregated interfaces. Full article
(This article belongs to the Special Issue Ab Initio Study of Metallic Materials)
Show Figures

Graphical abstract

14 pages, 5597 KB  
Article
Influence of Microstructural Morphology on Hydrogen Embrittlement in a Medium-Mn Steel Fe-12Mn-3Al-0.05C
by Xiao Shen, Wenwen Song, Simon Sevsek, Yan Ma, Claas Hüter, Robert Spatschek and Wolfgang Bleck
Metals 2019, 9(9), 929; https://doi.org/10.3390/met9090929 - 24 Aug 2019
Cited by 20 | Viewed by 5338
Abstract
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite, achieving an extraordinary balance of mechanical properties and alloying cost. In the present work, two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C [...] Read more.
The ultrafine-grained (UFG) duplex microstructure of medium-Mn steel consists of a considerable amount of austenite and ferrite/martensite, achieving an extraordinary balance of mechanical properties and alloying cost. In the present work, two heat treatment routes were performed on a cold-rolled medium-Mn steel Fe-12Mn-3Al-0.05C (wt.%) to achieve comparable mechanical properties with different microstructural morphologies. One heat treatment was merely austenite-reverted-transformation (ART) annealing and the other one was a successive combination of austenitization (AUS) and ART annealing. The distinct responses to hydrogen ingression were characterized and discussed. The UFG martensite colonies produced by the AUS + ART process were found to be detrimental to ductility regardless of the amount of hydrogen, which is likely attributed to the reduced lattice bonding strength according to the H-enhanced decohesion (HEDE) mechanism. With an increase in the hydrogen amount, the mixed microstructure (granular + lamellar) in the ART specimen revealed a clear embrittlement transition with the possible contribution of HEDE and H-enhanced localized plasticity (HELP) mechanisms. Full article
(This article belongs to the Special Issue Physical Metallurgy of High Manganese Steels)
Show Figures

Figure 1

14 pages, 28115 KB  
Article
Experimental Investigation of the Effect of Hydrogen on Fracture Toughness of 2.25Cr-1Mo-0.25V Steel and Welds after Annealing
by Yan Song, Mengyu Chai, Weijie Wu, Yilun Liu, Mu Qin and Guangxu Cheng
Materials 2018, 11(4), 499; https://doi.org/10.3390/ma11040499 - 27 Mar 2018
Cited by 26 | Viewed by 4971
Abstract
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence, it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work, the fracture behavior of 2.25Cr-1Mo-0.25V steel [...] Read more.
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence, it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work, the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover, the formation and growth of primary voids were observed in the BM, leading to a superior fracture toughness. In addition, the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area, thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content. Full article
Show Figures

Graphical abstract

Back to TopTop