Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = HS-SPME-GC-MS, sensorial analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1770 KB  
Article
Sensory–Chemical Co-Dynamics in Kadsura coccinea: ROAV-Driven Prioritization of Cultivar-Specific Odorants and Mechanistic Validation via Molecular Docking
by Lin Wang, Ruiyin Zhang, Huilan Wu, Juan Xie, Qi Tang and Zhen Dong
Foods 2025, 14(21), 3603; https://doi.org/10.3390/foods14213603 - 23 Oct 2025
Viewed by 420
Abstract
This study deciphered the aroma differences in three Kadsura coccinea cultivars (F023, F054, F055) through integrated volatile-omics and sensory analysis. HS-SPME-GC-MS identified 49 volatiles dominated by sesquiterpenes (65.2–78.4%). ROAV prioritization revealed cultivar-specific drivers: γ-dodecalactone (ROAV = 73.0) defined F054’s fruity–floral character; humulene (ROAV [...] Read more.
This study deciphered the aroma differences in three Kadsura coccinea cultivars (F023, F054, F055) through integrated volatile-omics and sensory analysis. HS-SPME-GC-MS identified 49 volatiles dominated by sesquiterpenes (65.2–78.4%). ROAV prioritization revealed cultivar-specific drivers: γ-dodecalactone (ROAV = 73.0) defined F054’s fruity–floral character; humulene (ROAV = 100) and β-caryophyllene shaped F023’s woody–pungent profile; and β-pinene (ROAV = 100) characterized F055’s herbaceous freshness. Molecular docking confirmed high-affinity binding of γ-dodecalactone to OR2W1 (ΔG = −6.42 kcal/mol via ASN155 H-bonding). Sensory PCA explained 83.48% of the variance, segregating cultivars along distinct axes (F054: sweet-aromatic; F023: woody-spicy; F055: herbaceous-fresh). Joint PCA validated γ-dodecalactone–coconut milk spatial co-localization (θ < 10°) and β-caryophyllene–woody note correlations (r > 0.9), establishing γ-dodecalactone as a breeding biomarker for aroma-driven cultivar improvement. Full article
Show Figures

Figure 1

14 pages, 1123 KB  
Article
Portable MOS Electronic Nose Screening of Virgin Olive Oils with HS-SPME-GC–MS Corroboration: Classification and Estimation of Sunflower-Oil Adulteration
by Ramiro Sánchez, Fernando Díaz and Lina Melo
Chemosensors 2025, 13(10), 374; https://doi.org/10.3390/chemosensors13100374 - 21 Oct 2025
Viewed by 616
Abstract
Extra virgin olive oil (EVOO) can degrade during production or storage to virgin olive oil (VOO) or lampante olive oil (LOO). Fraud can also occur during commercialisation through the adulteration of EVOO (Ad-EVOO) with cheaper sunflower oil (SFO). Therefore, rapid screening techniques for [...] Read more.
Extra virgin olive oil (EVOO) can degrade during production or storage to virgin olive oil (VOO) or lampante olive oil (LOO). Fraud can also occur during commercialisation through the adulteration of EVOO (Ad-EVOO) with cheaper sunflower oil (SFO). Therefore, rapid screening techniques for quality control are needed. We evaluated an electronic nose (EN) with chemometrics—linear discriminant analysis (LDA), artificial neural-network discriminant analysis (ANN-DA), and partial least-squares regression (PLS)—in two scenarios: (i) classification into four classes (EVOO, VOO, LOO, and Ad-EVOO adulterated with 25% w/w SFO); and (ii) Ad-EVOO series containing 5–40% w/w SFO. Classes were corroborated by HS-SPME-GC-MS, with elevated (E)-2-hexenal and 3-hexen-1-ol in EVOO and increases in nonanal, ethyl acetate, and 2-propanol in deteriorated oils. Using the EN, LDA separated the classes, and ANN-DA achieved 90% accuracy under cross-validation, with the greatest confusion between VOO and LOO. In adulteration, discrimination emerged from 20% SFO, and PLS estimated %Ad-EVOO with R2pred = 0.972 (RMSEC/RMSEP = 8.059/5.627). In conclusion, the EN provides objective, rapid, and non-destructive screening that supports sensory panels and chromatographic analyses during reception and storage in industrial settings. Full article
(This article belongs to the Special Issue Detection of Volatile Organic Compounds in Complex Mixtures)
Show Figures

Figure 1

23 pages, 6270 KB  
Article
Elucidation of Flavor Profile Dynamics in Tea-Flavor Baijiu During Long-Term Storage Using Sensory Evaluation, Electronic Nose, HS-GC-IMS, and HS-SPME-GC-MS
by Qingqing Liu, Yan Lv, Yu Zhou, Min Liu, Huafang Feng, Caihong Shen, Hongwei Wang, Xiaonian Cao and Jianquan Kan
Processes 2025, 13(10), 3359; https://doi.org/10.3390/pr13103359 - 20 Oct 2025
Viewed by 419
Abstract
Tea-flavor baijiu, in which the aroma combines the tea note and the typical profile of baijiu, has brought a fresh flavor to the market. Yet its flavor evolution during the storage period and the associated changes in volatile compounds remain poorly characterized. To [...] Read more.
Tea-flavor baijiu, in which the aroma combines the tea note and the typical profile of baijiu, has brought a fresh flavor to the market. Yet its flavor evolution during the storage period and the associated changes in volatile compounds remain poorly characterized. To systematically address the flavor profile dynamics during storage, the study evaluated tea-flavor baijiu of varying ages using integrated sensory and instrumental analyses. Through napping with ultra-flash profiling (Napping-UFP) and check-all-that-apply (CATA), the sensory attributes from aroma, flavor, and mouthfeel profiles of tea-flavor baijiu were established, and quantitative descriptive analysis (QDA) was employed to distinguish the distinct sensory profiles among samples with different aging durations. The overall aroma patterns were examined using an electronic nose (E-nose), and the distinction of sample A401 with the longest storage period was notable. Headspace gas chromatography–ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC-MS) were used to identify and quantify the volatile compounds, while aging notably altered volatile composition with increased ester levels and reduced alcohol content; hence, the short-aged (one to three years), mid-aged (four to six years), and long-aged (seven and eight years) samples could be easily differentiated. Through the analysis of the data, 12 key odor-active compounds, namely (E)-2-methyl-2-butenal, ethyl caproate, 3-methylbutanal, 2-pentanone, ethyl acetate, ethyl heptanoate, ethyl 2-methylbutanoate, ethyl pentanoate, ethyl butyrate, ethyl hexanoate, ethyl octanoate, and 2,4-di-tert-butylphenol, were identified as major contributors to shifts. Furthermore, Pearson correlation analysis revealed a strong negative association between the accumulation of esters and the intensity of tea aroma in long-aged samples, clarifying the chemical mechanism underlying the diminished tea note in aged tea-flavor baijiu. This study provides new insights into the impact of aging on the flavor profile of tea-flavor baijiu and offers a scientific foundation for improving its production, storage, and quality management. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Graphical abstract

11 pages, 330 KB  
Article
The Volatile Compound Profile of “Lumblija”, the Croatian Protected Geographical Indication Sweet Bread
by Ani Radonić, Lucia Šarić, Zvonimir Marijanović and Mladenka Šarolić
AppliedChem 2025, 5(4), 29; https://doi.org/10.3390/appliedchem5040029 - 20 Oct 2025
Viewed by 251
Abstract
“Lumblija” is a Croatian autochthonous sweet bread which recently obtained a European Protected Geographical Indication (PGI) label. The peculiarity of “Lumblija” is the use of ingredients such as concentrated grape must, rose or herbal brandy, and various herbs and spices, mostly produced and [...] Read more.
“Lumblija” is a Croatian autochthonous sweet bread which recently obtained a European Protected Geographical Indication (PGI) label. The peculiarity of “Lumblija” is the use of ingredients such as concentrated grape must, rose or herbal brandy, and various herbs and spices, mostly produced and collected in the area of the island of Korčula. To the author’s knowledge, the volatile compounds of “Lumblija” have not been investigated till now. The aim of this study was to characterise the volatile compounds responsible for the distinctive aroma of the traditional sweet bread “Lumblija”, which is widely appreciated for its unique sensory properties. Four samples of “Lumblija” were investigated. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry analysis (HS-SPME/GC-MS) was applied for volatile compound characterisation of “Lumblija” samples. A total of 50 volatile compounds were identified in the “Lumblija” samples. Volatile compounds belong to different chemical classes: terpenes, phenylpropanoids, alcohols, aldehydes, esters, ketones, aromatic hydrocarbons, and carboxylic acids. Among them, terpenes and phenylpropanoids were the most numerous and the most abundant volatile compounds. Most differences in the volatile compound profile of “Lumblija” samples can be attributed to some specific ingredients such as spices. The results of this study could be useful to establish a volatile compound profile of “Lumblija”, which could serve as an indicator of the authenticity and quality of this autochthonous bakery product. Full article
Show Figures

Figure 1

16 pages, 1349 KB  
Article
Chemical Profiling and Sensory Analysis Reveal Quality Differentiation in Baimudan White Tea Processed from Three Major Fujian Tea Cultivars
by Yucheng Zheng, Yuping Zhang, Yun Zou, Yutao Shi, Jianming Zhang, Huili Deng, Zhanhua Ji, Zhenying Liang and Xinlei Li
Horticulturae 2025, 11(10), 1196; https://doi.org/10.3390/horticulturae11101196 - 3 Oct 2025
Viewed by 647
Abstract
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), [...] Read more.
White tea quality is primarily determined by its chemical composition, which varies significantly among cultivars. This study aimed to elucidate the chemical basis underlying quality differentiation in Baimudan white tea produced from three major Fujian tea cultivars: “Zhenghe Dabaicha” (ZHDB), “Fuan Dabaicha” (FADB), and “Fuding Dahaocha” (FDDH). Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), liquid chromatography–mass spectrometry (LC-MS), and quantitative descriptive analysis (QDA) were employed to characterize volatile compounds, amino acids, and saccharides. Odor Activity Values (OAVs) and Taste Activity Values (TAVs) were calculated to identify key contributors to sensory perception. Results showed that theanine, glutamic acid, asparagine, and serine were the primary contributors to umami taste, especially in ZHDB and FADB. Sweetness differences were largely due to sucrose, serine, and asparagine. OAV analysis further identified 22 critical aroma compounds: methyl salicylate, linalool, and β-ionone predominantly imparted floral notes, while β-ocimene, benzaldehyde, and geraniol enhanced sweet and fruity aromas. In contrast, (Z)-3-hexenol, (Z)-3-hexenal, and (E)-2-hexenal contributed grassy and refreshing characteristics, together defining the unique aroma profiles of each cultivar. This study provides an integrated chemical and sensory framework for understanding white tea quality variation, offering a theoretical basis for targeted flavor modulation. Full article
Show Figures

Figure 1

21 pages, 1197 KB  
Article
Sensory and Chemical Characterization of Upcycled Pomace- and Whey-Based Piquette Beverages
by Dean G. Hauser, Rahul Sen, Scott R. Lafontaine, Chris Gerling, Luann M. Preston-Wisley, Timothy A. Demarsh and Samuel D. Alcaine
Foods 2025, 14(18), 3240; https://doi.org/10.3390/foods14183240 - 18 Sep 2025
Viewed by 759
Abstract
Upcycling, or utilizing materials that would otherwise go to waste, enables the creation of novel products that offer sustainability advantages and generate additional value. This study evaluates the feasibility of producing alcoholic beverages using yogurt acid whey (YAW) and grape pomace (GP), byproducts [...] Read more.
Upcycling, or utilizing materials that would otherwise go to waste, enables the creation of novel products that offer sustainability advantages and generate additional value. This study evaluates the feasibility of producing alcoholic beverages using yogurt acid whey (YAW) and grape pomace (GP), byproducts of the dairy and wine industries, respectively, and compares them to commercial grape pomace beverages (piquettes) in terms of sensory attributes and chemical composition. Two YAW-GP piquettes were produced, and five commercial piquettes were obtained. Sugars and organic acids were quantified using HPLC-RID, and semi-quantitative volatile composition was determined using HS-SPME-GC-MS/MS. Descriptive analysis was conducted using a trained panel of 11 individuals. The YAW products had higher ratings for dairy, salty, acidic, and umami attributes, and lower ratings for bitterness, sweetness, red fruit, dried fruit, and overall fruity characteristics. YAW beverages were higher in titratable acidity (TA), lactose, lactic acid, citric acid, galactose, hexanoic acid, 3-methylpentanol, 1-octanol, and 1-octen-3-ol, and lower in ethanol and linalool. The commercial products were differentiated based on ethanol content, red fruit, dried fruit, fruitiness, chemical, and barnyard aromas. These results can be used to understand the breadth of chemical and organoleptic signatures of this new beverage category, which can be leveraged by stakeholders interested in entering the market. Full article
(This article belongs to the Special Issue Application of Fermentation Biotechnology in Food Science)
Show Figures

Figure 1

17 pages, 2813 KB  
Article
Effect of Yeast Polysaccharides Replacing Sulfur Dioxide on Antioxidant Property and Quality Characteristics of Cabernet Sauvignon Wines
by Rui Liao, Xiongjun Xiao, Huiling Huang, Kangjie Yu, Jianxia Tan, Yue Wang, Cong Li, Siyu Li and Yi Ma
Foods 2025, 14(18), 3188; https://doi.org/10.3390/foods14183188 - 12 Sep 2025
Viewed by 427
Abstract
This study investigated the potential of yeast polysaccharides (YPs) as an SO2 substitute by adding varying concentrations (0–250 mg/L) prior to wine fermentation. The antioxidant activity and color stability were evaluated using UV–visible spectrophotometry, high-performance liquid chromatography, and colorimetric methods. Furthermore, HS-SPME-GC-MS [...] Read more.
This study investigated the potential of yeast polysaccharides (YPs) as an SO2 substitute by adding varying concentrations (0–250 mg/L) prior to wine fermentation. The antioxidant activity and color stability were evaluated using UV–visible spectrophotometry, high-performance liquid chromatography, and colorimetric methods. Furthermore, HS-SPME-GC-MS and quantitative descriptive analysis were employed to compare the volatile compound profiles and sensory attributes between the optimal yeast polysaccharide treatment group (TS100, 100 mg/L) and the sulfur dioxide treatment group (S). Results showed that YPs addition effectively preserved phenolic compounds, with TS100 exhibiting the highest total phenols, flavonoids, and anthocyanins, where total anthocyanins reached 340.79 mg/L, a 2.52% increase over the S group. ABTS+ scavenging activity showed no significant difference from the S group, confirming strong antioxidant capacity. Flavor compound content was higher in TS100 (10,458.99 μg/L) than in the S group (10,156.07 μg/L), with ethyl caprylate and ethyl decanoate being particularly prominent. These esters contributed intense fatty and fruity aromas, enhancing the overall sensory quality of the wine. In summary, 100 mg/L YPs addition yielded the best wine quality, demonstrating promising potential as an SO2 alternative in winemaking. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

19 pages, 2264 KB  
Article
Comparative Evaluation of Puffing Effects on Physicochemical and Volatile Profiles of Brown and Refined Rice
by Xiaomei Liu, Yi Zhang, Kai Zhu, Fan Xie, Haoyu Si, Songheng Wu, Bingjie Chen, Qi Zheng, Xiao Wang, Yong Zhao and Yongjin Qiao
Foods 2025, 14(16), 2812; https://doi.org/10.3390/foods14162812 - 13 Aug 2025
Viewed by 724
Abstract
Rice has excellent nutritional quality as a dietary food and is easily puffed. The aim of this study was to investigate the effects of puffing technology on the physicochemical parameters, structure properties and volatile components of brown rice (BR) and refined rice (RR). [...] Read more.
Rice has excellent nutritional quality as a dietary food and is easily puffed. The aim of this study was to investigate the effects of puffing technology on the physicochemical parameters, structure properties and volatile components of brown rice (BR) and refined rice (RR). XRD and FT-IR spectroscopic data demonstrated that puffing under high temperature and pressure conditions triggered starch gelatinization, concurrently reducing starch crystallinity and inducing a V-type polymorphic structure. In addition, it substantially weakened hydrogen bonding networks in rice flour. In detail, 136 volatile compounds of raw and puffed rice were analyzed by HS-SPME-GC-MS, and the results showed that aldehydes, ketones, and pyrazines were the main volatile aroma compounds after puffing. By correlation analysis, benzaldehyde, 2-octenal, 2-methoxy-phenol, and furfural were identified as key contributors. The volatile components, especially ketones and alcohols, were higher in the BR as compared to those in the RR, with a significant difference observed between the two (p < 0.05). Combined with sensory evaluation, 1212CH was found to have a high score (17.63). These results could provide a theoretical basis for understanding the effect of puffing on rice flour and the volatile components of puffed products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 6714 KB  
Article
Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea
by Jialin Chen, Binghong Liu, Yide Zhou, Jiahao Chen, Yanchun Zheng, Hui Meng, Xindong Tan, Peng Zheng, Binmei Sun, Hongbo Zhao and Shaoqun Liu
Foods 2025, 14(14), 2466; https://doi.org/10.3390/foods14142466 - 14 Jul 2025
Viewed by 1262
Abstract
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to [...] Read more.
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to analyze non-volatile and volatile compounds in five NGBT cultivars—Jinshahong (JSH), Danxia No.1 (DXY), Danxia No.2 (DXE), Yingde Black Tea (QTZ), and Yinghong No.9 (YHJ)—alongside sensory evaluation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified key non-volatile discriminants (VIP > 1) ranked by contribution: total catechins > simple catechins > CG > EGCG > ester catechins > EGC. HS-SPME-GC-MS detected 97 volatiles, with eight aroma-active compounds exhibiting OAV > 1 and VIP > 1: Geraniol > Methyl salicylate > Linalool > β-Myrcene > Benzyl alcohol > (Z)-Linalool Oxide > Phenethyl alcohol > (Z)-Jasmone. These compounds drive cultivar-specific aromas in NGBTs. Findings establish a theoretical framework for evaluating cultivar-driven flavor quality and provide novel insights for targeted breeding and processing optimization of NGBTs. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

25 pages, 2431 KB  
Article
Chemical, Sensory, and Nutraceutical Profiling, and Shelf-Life Assessment of High-Quality Extra Virgin Olive Oil Produced in a Local Area near Florence (Italy)
by Carlotta Breschi, Lorenzo Cecchi, Federico Mattagli, Bruno Zanoni, Tommaso Ugolini, Francesca Ieri, Luca Calamai, Maria Bellumori, Nadia Mulinacci, Fabio Boncinelli, Valentina Canuti and Silvio Menghini
Molecules 2025, 30(13), 2811; https://doi.org/10.3390/molecules30132811 - 30 Jun 2025
Cited by 1 | Viewed by 1468
Abstract
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production [...] Read more.
Consumers are increasingly willing to pay a premium for high-quality extra virgin olive oils (HQ-EVOOs) with specific sensory or nutraceutical properties, and originating from particular botanical or geographical origins. Regarding geographic origin, Italy is one of the main producers, with many local production areas, each characterized by its own distinctive typicity. The aim of this study is the chemical, sensory, and nutraceutical profiling of HQ-EVOO produced over two production years in Montespertoli (province of Florence) by 12 producers involved in the “MontEspertOlio” project, funded by the Tuscan Region. Oils were produced based on a production process previously defined and specifically applied to this territory. The shelf-life of the oil was also evaluated over a 12-month period. Legal quality parameters were analyzed according to EU regulation. Phenolic compounds, tocopherols, fatty acid composition, and volatile compounds were analyzed using HPLC-DAD, HPLC-FLD, HS-SPME-GC-MS, and GC-FID, respectively. Finally, sensory analysis was conducted using the Panel Test method. Results showed that Montespertoli HQ-EVOO is characterized by distinctive sensory and chemical traits that fully match consumer preferences, even across two production years characterized by different growing conditions. The shelf-life performance was excellent over 12 months, also showing a protective effect of greater bottle sizes against oxidation. Full article
Show Figures

Figure 1

15 pages, 4388 KB  
Article
Metabolomic Insights into Volatile Profiles and Flavor Enhancement of Spice-Smoked Chicken Wings
by Yajiao Zhao, Ye Guo, Danni Zhang, Quanlong Zhou, Xiaoxiao Feng and Yuan Liu
Foods 2025, 14(13), 2270; https://doi.org/10.3390/foods14132270 - 26 Jun 2025
Viewed by 834
Abstract
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with [...] Read more.
Traditional smoking techniques, while historically valued for preservation and flavor enhancement, face limitations in aromatic diversity and safety, prompting exploration of spice-derived alternatives to meet modern culinary demands. This study explores the volatile compound profiles and aroma modulation of chicken wings smoked with four spices—cardamom, rosemary, mint, and rose—using a novel, household-friendly smoking protocol. The method combines air fryer pre-cooking (180 °C, 16 min) with electric griddle-based smoke infusion, followed by HS-SPME/GC-TOF/MS, relative odor activity value (ROAV) calculations, and metabolomic analysis. A total of 314 volatile compounds were identified across five samples. Among them, 45 compounds demonstrated odor activity values (ROAV) ≥ 1, contributing to green, woody, floral, and sweet aroma attributes. Eucalyptol displayed the highest ROAV (2543), underscoring its dominant sensory impact. Metabolomic profiling revealed a general upregulation of differential volatiles post-smoking: terpenes were enriched in wings smoked with cardamom, rosemary, and mint, while aldehydes and alcohols predominated in rose-smoked samples. An integrated screening based on ROAV and metabolomic data identified 24 key volatiles, including eucalyptol, β-myrcene, methanethiol, and α-pinene, which collectively defined the aroma signatures of spice-smoked wings. Spice-specific aroma enrichment and sensory properties were evident: rosemary intensified woody–spicy notes, mint enhanced herbal freshness, and rose amplified floral attributes. The proposed method demonstrated advantages in safety, ease of use, and flavor customization, aligning with clean-label trends and supporting innovation in home-based culinary practices. Moreover, it facilitates the tailored modulation of smoked meat flavor profiles, thereby enhancing product differentiation and broadening consumer acceptance. Full article
(This article belongs to the Special Issue Foodomics Fifteen Years On From. Where Are We Now, What’s Next)
Show Figures

Graphical abstract

14 pages, 2626 KB  
Article
Aroma-Driven Differentiation of Wuyi Shuixian Tea Grades: The Pivotal Role of Linalool Revealed by OAV and Multivariate Analysis
by Mengzhen Zhang, Ying Zhang, Yeyun Lin, Yuhua Wang, Jishuang Zou, Miaoen Qiu, Qingxu Zhang, Jianghua Ye, Xiaoli Jia, Haibin He, Haibin Wang and Qi Zhang
Foods 2025, 14(13), 2169; https://doi.org/10.3390/foods14132169 - 21 Jun 2025
Cited by 1 | Viewed by 797
Abstract
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, [...] Read more.
Wuyi Shuixian tea, a premium oolong tea known for its complex floral-fruity aroma, exhibits significant quality variations across different grades. This study systematically analyzed the aroma characteristics and key fragrant compounds of four grades (Grand Prize SA, First Prize SB, Outstanding Award SC, and Non-award SD) using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), odor activity value (OAV) analysis, and multivariate statistical methods. A total of 159 volatile compounds were identified, with similar compound categories but distinct concentration gradients between grades. OAV-splitting analysis (based on OAV ≥ 1 as the threshold for aroma activity) identified β-ionone (fruity), octanal (fatty), and linalool (floral) as core aroma-active contributors, as their OAV values significantly exceeded 10 in awarded grades (SA, SB, SC), indicating dominant roles in sensory perception. Notably, linalool, a floral marker, showed a concentration gradient (SA > SB > SC) and was absent in SD, serving as a critical determinant of grade differentiation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) further distinguished awarded grades (SA, SB, SC) by balanced fruity, floral, and woody notes, while SD lacked floral traits and exhibited burnt aromas. This classification was supported by hierarchical clustering analysis (HCA) of volatile profiles and principal component analysis (PCA). Electronic nose data validated these findings, showing strong correlations between sensor responses (W5S/W2W) and key compounds like hexanal and β-ionone. This study elucidates the molecular basis of aroma-driven quality grading in Wuyi Shuixian tea, providing a scientific framework for optimizing processing techniques and enhancing quality evaluation standards. The integration of chemical profiling with sensory attributes advances precision in tea industry practices, bridging traditional grading with objective analytical metrics. Full article
(This article belongs to the Special Issue Tea Technology and Resource Utilization)
Show Figures

Figure 1

17 pages, 891 KB  
Article
Volatile Profiling of Tongcheng Xiaohua Tea from Different Geographical Origins: A Multimethod Investigation Using Sensory Analysis, E-Nose, HS-SPME-GC-MS, and Chemometrics
by Ge Jin, Chenyue Bi, Anqi Ji, Jieyi Hu, Yuanrong Zhang, Lumin Yang, Sunhao Wu, Zhaoyang Shen, Zhou Zhou, Xiao Li, Huaguang Qin, Dan Mu, Ruyan Hou and Yan Wu
Foods 2025, 14(11), 1996; https://doi.org/10.3390/foods14111996 - 5 Jun 2025
Cited by 2 | Viewed by 1089
Abstract
The evaluation of region-specific aroma characteristics in green tea remains critical for quality control. This study systematically analyzed eight Tongcheng Xiaohua tea samples (standard and premium batches) originating from four distinct regions using sensory analysis, electronic nose (E-nose), headspace solid-phase microextraction coupled with [...] Read more.
The evaluation of region-specific aroma characteristics in green tea remains critical for quality control. This study systematically analyzed eight Tongcheng Xiaohua tea samples (standard and premium batches) originating from four distinct regions using sensory analysis, electronic nose (E-nose), headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS), and chemometrics. The E-nose results demonstrated that the volatile characteristics of Tongcheng Xiaohua tea exhibit distinct geographical signatures, confirming the regional specificity of its aroma. HS-SPME-GC-MS identified 66 volatile metabolites across samples, with 18 key odorants (OAV > 1) including linalool, geraniol, (Z)-jasmone, and β-ionone driving aroma profiles. The partial least squares–discriminant analysis (PLS-DA) model, combined with variable importance in projection (VIP) scores and OAV, identified seven compounds that effectively differentiate the origins, among which α-pinene and β-cyclocitral emerged as novel markers imparting unique regional characteristics. Further comparative analysis between standard and premium grades revealed 2-methyl butanal, 3-methyl butanal, and dimethyl sulfide as main differential metabolites. Notably, the influence of geographical origin on metabolite profiles was found to be more significant than batch effects. These findings establish a robust analytical framework for origin traceability, quality standardization, and flavor optimization in tea production, providing valuable insights for the tea industry. Full article
(This article belongs to the Special Issue Flavor and Aroma Analysis as an Approach to Quality Control of Foods)
Show Figures

Figure 1

15 pages, 1619 KB  
Article
Characterization of Aroma, Sensory Properties, and Consumer Acceptability of Honey from Capparis spinosa L.
by Gianluca Tripodi, Maria Merlino, Marco Torre, Concetta Condurso, Antonella Verzera and Fabrizio Cincotta
Foods 2025, 14(11), 1978; https://doi.org/10.3390/foods14111978 - 3 Jun 2025
Cited by 1 | Viewed by 1074
Abstract
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey [...] Read more.
The increasing scarcity of traditional nectar sources due to climate change has led beekeepers to explore alternative floral sources. This study investigates the volatile profile, sensory characteristics, and consumer acceptability of monofloral honey derived from Capparis spinosa L., a drought-resistant Mediterranean plant. Honey samples produced by Apis mellifera ssp. sicula on Aeolian Islands (Sicily, Italy) were analyzed. Volatile organic compounds (VOCs) were extracted using headspace solid–phase microextraction (HS-SPME) and identified by gas chromatography–mass spectrometry (GC–MS), revealing 59 compounds, with dimethyl sulfide being the predominant one. Sensory evaluation using quantitative descriptive analysis (QDA) and Time Intensity (TI) analysis identified distinctive descriptors such as sweet-caramel, cabbage/cauliflower, and pungent notes. Statistical analyses confirmed correlations between specific VOCs and sensory perceptions. A consumer acceptability test involving 80 participants showed lower preference scores for caper honey in terms of aroma and overall acceptability compared to commercial multifloral honey, with differences observed across age groups. The unique aromatic profile and consumer feedback suggest that caper honey has strong potential as a niche, high-quality product, particularly within the context of climate-resilient beekeeping, offering valuable opportunities for innovation and diversification in sustainable apiculture. Full article
(This article belongs to the Special Issue Novel Insights into Food Flavor Chemistry and Analysis)
Show Figures

Figure 1

18 pages, 2716 KB  
Article
Changes in the Volatile Profile, Fruity Flavor, and Rancidity in Virgin Olive Oils During Storage by Targeted and Untargeted Analytical Approaches
by Rosalba Tucci, Chiara Cevoli, Alessandra Bendini, Sara Barbieri, Enrico Casadei, Enrico Valli and Tullia Gallina Toschi
Foods 2025, 14(11), 1884; https://doi.org/10.3390/foods14111884 - 26 May 2025
Cited by 2 | Viewed by 1091
Abstract
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two [...] Read more.
The changes in monovarietal extra virgin olive oils (EVOOs), produced with olives grown under different agronomic conditions, were investigated by targeted and untargeted analytical approaches. Specifically, volatile molecules were monitored in oils just produced and stored for 6 and 12 months with two different packaging solutions. The targeted SPME-GC–MS method showed an increase in volatile markers of lipid oxidation. Moreover, more rapid analytical approaches, namely targeted HS-GC–IMS and untargeted FGC, were used to investigate volatile organic compounds (VOCs). These chromatographic methods, respectively, returned heatmaps and fingerprint profiles that were elaborated on by multivariate analysis. Exploratory principal component analysis performed on the data from VOCs allowed the clustering of samples based on the storage time. The quality of samples was also determined by a panel test. Furthermore, this study employed previously built models using partial least squares discriminant analysis to confirm the sensory classification of the stored samples. Based on these predictive models, all samples were confirmed as EVOO, except for one categorized as virgin (rancid according to the panel test). This classification was further supported by the SPME-GC–MS analysis, which revealed higher concentrations of lipid oxidation markers in this specific sample, in particular the (E)-2-heptenal reached a concentration twenty times higher than its odor threshold. In addition, five oils were inconsistently classified by the models and considered at risk of downgrading the commercial category after 12 months of storage. Full article
Show Figures

Figure 1

Back to TopTop