Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,155)

Search Parameters:
Keywords = HUVECs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6007 KB  
Article
The Antiangiogenic Effect of VEGF-A siRNA-FAM-Loaded Exosomes
by Woojune Hur, Basanta Bhujel, Seheon Oh, Seorin Lee, Ho Seok Chung, Jin Hyoung Park and Jae Yong Kim
Bioengineering 2025, 12(9), 919; https://doi.org/10.3390/bioengineering12090919 - 26 Aug 2025
Abstract
Neovascular ocular diseases are caused by vascular endothelial growth factor A (VEGFA) overexpression. Thus, VEGFA inhibition is considered the main strategy for treating ocular neovascularization. However, existing anti-VEGF therapies have several limitations in stability and delivery efficiency. To overcome the limitations, exosome-based VEGF [...] Read more.
Neovascular ocular diseases are caused by vascular endothelial growth factor A (VEGFA) overexpression. Thus, VEGFA inhibition is considered the main strategy for treating ocular neovascularization. However, existing anti-VEGF therapies have several limitations in stability and delivery efficiency. To overcome the limitations, exosome-based VEGF siRNA delivery technology has attracted attention since exosomes have the advantages of high in vivo stability and excellent intracellular delivery efficiency. Additionally, loading VEGFA siRNA into exosomes not only allows for targeting specific cells or tissues but can also improve therapeutic efficacy. Our research team purified and concentrated exosomes using chromatography techniques, added fluorescein amidite (FAM)-labeled VEGFA siRNA into exosomes, and observed the novel effect of drug delivery in vitro. This study successfully introduced hVEGFA siRNA-FAM into target cells, with high efficacy particularly at 48 h after treatment. Furthermore, the enhanced inhibition of VEGFA expression at 48 h post-treatment was confirmed. FACS analysis was performed using the apoptosis markers Annexin V-FITC (green) and PI-PE (red) to confirm the presence or absence of apoptosis. Both groups treated with hVEGFA siRNA-FAM-EXO (1) and hVEGFA siRNA-FAM-EXO (2) showed increased apoptosis as the exposure time passed compared to the untreated group (0 h). hVEGFA siRNA-FAM-EXO treatment effectively induced apoptosis. After 24 h, early apoptosis was 12.9% and 13.9% and late apoptosis was 1.5% and 3.7% in hVEGFA siRNA-FAM-EXO groups (1) and (2), respectively. After 48 h, early apoptosis was 23.9% and late apoptosis was 39.4% and 17.8% in hVEGFA siRNA-FAM-EXO groups (1) and (2), respectively, indicating a time-dependent pattern of apoptosis progression. Additionally, tube formation of human vascular endothelial cells (HUVECs) was induced to confirm the effect of VEGFA siRNA-loaded exosomes on the angiogenesis assay in vitro. Compared with controls, angiogenesis became significantly weakened in hVEGFA siRNA-FAM-EXO (1)- and hVEGFA siRNA-FAM-EXO (2)-treated groups at 48 h post-treatment and completely disappeared at 72 h, probably occurring due to decreased VEGFA, PIGF, and VEGFC in the intracellular cytosol and conditioned media secreted by VEGFA siRNA-FAM in HUVECs. In conclusions, FAM-tagged VEGFA siRNA was packed into exosomes and degraded over time after tube formation, leading to cell death due to a decrease in VEGFA, PIGF, and VEGFC levels. This study is expected to support the development of in vivo neovascularization models (keratitis, conjunctivitis, or diabetic retinopathy models) in the future. Full article
(This article belongs to the Special Issue Recent Advances and Trends in Ophthalmic Diseases Treatment)
Show Figures

Figure 1

19 pages, 2173 KB  
Article
Active Peptides from Crayfish Shell: Isolation, Purification, Identification and Cytoprotective Function on Cells Damaged by H2O2
by Chan Bai, Wenqing Wang, Guowei Huang, Ya Wang, Xiaoyan Zu, Liang Qiu, Ziyi Tu, Wei Yu and Tao Liao
Biomolecules 2025, 15(9), 1225; https://doi.org/10.3390/biom15091225 - 26 Aug 2025
Abstract
This study presents a strategy to develop crayfish shell peptides with enhanced antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory properties. Crayfish shell protein hydrolysates (CSPH1–3) with different molecular weights were analyzed. CSPH2 (3–5 kDa) exhibited the strongest antioxidant activities, which could scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) [...] Read more.
This study presents a strategy to develop crayfish shell peptides with enhanced antioxidant and angiotensin-I-converting enzyme (ACE) inhibitory properties. Crayfish shell protein hydrolysates (CSPH1–3) with different molecular weights were analyzed. CSPH2 (3–5 kDa) exhibited the strongest antioxidant activities, which could scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2,2′-azobis(3-ethylbenzothiazoline-6-sulfonic acid) sodium salt (ABTS) radical by (77.40 ± 4.54)% and (91.59 ± 0.30)%, respectively, and ACE inhibition activity of (64.74 ± 0.64)%. CSPH2 was further separated into three fractions, and CSPHF2 showed the maximum biological activity. The sequences of the purified antioxidant peptide (APAPLPPPAP) and ACE inhibitory peptide (QGPDDPLIPIM) were identified by liquid chromatography–tandem mass spectrometry (LC-MS/MS) in CSPHF2. These peptides increased the nitric oxide (NO) concentration and decreased the endothelin-1 (ET-1) content in human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, while also inhibiting reactive oxygen species (ROS). In addition, CSPH showed protective effects in terms of oxidative damage to HepG2 cells induced by H2O2. These findings suggest that crayfish shell peptides have potential applications as ingredients in antihypertensive agents and antioxidants, offering significant health benefits when consumed. Full article
Show Figures

Figure 1

21 pages, 4547 KB  
Article
EPIFBMC: A New Model for Enhancer–Promoter Interaction Prediction
by Chengfeng Bao, Gang Wang, Guojun Sheng and Yu Chen
Int. J. Mol. Sci. 2025, 26(16), 8035; https://doi.org/10.3390/ijms26168035 - 20 Aug 2025
Viewed by 259
Abstract
Enhancer–promoter interactions (EPIs) play a key role in epigenetic regulation of gene expression, dominating cellular identity and functional diversity. Dissecting these interactions is crucial for understanding transcriptional regulatory networks and their significance in cell differentiation, development, and disease. Here, we propose a novel [...] Read more.
Enhancer–promoter interactions (EPIs) play a key role in epigenetic regulation of gene expression, dominating cellular identity and functional diversity. Dissecting these interactions is crucial for understanding transcriptional regulatory networks and their significance in cell differentiation, development, and disease. Here, we propose a novel deep learning framework, EPIFBMC (Enhancer-Promoter Interaction prediction with FBMC network) that leverages DNA sequence and genomic features for accurate EPI prediction. The FBMC network consists of three key modules: the Four-Encoding module first encodes the DNA sequence in multiple dimensions to extract key sequence information; then the BESL (Balanced Ensemble Subset Learning) adopts an integrated subset learning strategy to optimize the feature-learning process of positive and negative samples; finally, the MCANet module completes the training of EPI prediction based on a Multi-channel Network. We evaluated EPIFBMC on three cell line datasets (HeLa, IMR90, and NHEK), and validated its generalizability across three independent datasets (K562, GM12878, HUVEC) through cross-cell-line experiments, comparing favorably with state-of-the-art methods. Notably, EPIFBMC balances genomic feature richness and computational complexity, significantly accelerating training speed. Ablation studies identified two key DNA sequence features—positional conservation and positional specificity score—which showed critical predictive value across a benchmark dataset of six diverse cell lines. The computational testing show that EPIFBMC shows excellent performance in the EPI prediction task, providing a powerful tool for decoding gene regulatory networks. It is believed that it will have important application prospects in developmental biology, disease mechanism research, and therapeutic target discovery. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 3925 KB  
Communication
Identifying Angiogenic Factors in Pediatric Choroid Plexus Papillomas
by Nurfarhanah Bte Syed Sulaiman, Sofiah M. Y. Sng, Khurshid Z. Merchant, Lee Ping Ng, David C. Y. Low, Wan Tew Seow and Sharon Y. Y. Low
NeuroSci 2025, 6(3), 76; https://doi.org/10.3390/neurosci6030076 - 11 Aug 2025
Viewed by 382
Abstract
(1) Background: Choroid plexus papillomas (CPPs) are rare brain tumors that tend to occur in very young children. Mechanisms of CPP development remain unelucidated. Separately, the process of angiogenesis has been implicated in other primary brain tumors. We hypothesize that angiogenesis is a [...] Read more.
(1) Background: Choroid plexus papillomas (CPPs) are rare brain tumors that tend to occur in very young children. Mechanisms of CPP development remain unelucidated. Separately, the process of angiogenesis has been implicated in other primary brain tumors. We hypothesize that angiogenesis is a hallmark of CPP biology. This study aims to identify and validate angiogenic factors in CPPs. (2) Methods: Cerebrospinal fluid (CSF) and CPP tumor samples are collected. A multiplex immunoassay panel is used to identify differentially expressed cytokines in the CSF samples. Concurrently, patient-derived primary cell cultures and their supernatants are derived from CPP samples. Targeted proteome blot arrays and human umbilical vein endothelial cell (HUVEC) angiogenesis assays are used for validation studies. (3) Results: CSF profiling showed higher expressions of VEGF-A, MCP-1, MMP-1, TNF-α, and CD40L in CPP patient samples versus non-tumor controls. Next, assessment via online protein–protein network platforms reports that these cytokines are associated with endothelial cell regulation. Using an angiogenesis-focused approach, CPP-derived cell lines and supernatants showed similarly higher expressions of VEGF, MCP-1, and MMP-1. Next, sprouting of nodes and tubule formation were observed in HUVEC angiogenesis assay cultures when conditioned CPP cell culture media was added. (4) Conclusions: This proof-of-concept study demonstrates potential to explore angiogenesis in CPP. Full article
Show Figures

Figure 1

20 pages, 2284 KB  
Article
Balancing the Cellular Inflammatory-Homeostatic Axis Through Natural Ingredient Supplementation
by Valentina Bordano, Chiara Gerbino, Valentina Boscaro, Patrizia Rubiolo, Arianna Marengo, Stefania Pizzimenti, Marie Angèle Cucci, Stefania Cannito, Jessica Nurcis, Margherita Gallicchio, Simona Federica Spampinato, Luigi Cangemi, Claudia Bocca, Chiara Dianzani, Arianna Carolina Rosa and Elisa Benetti
Nutrients 2025, 17(16), 2587; https://doi.org/10.3390/nu17162587 - 8 Aug 2025
Viewed by 380
Abstract
Background/Objectives: Dietary supplements are sources of nutrients or other substances that added to a healthy lifestyle help to preserve human homeostasis. Since inflammation is one of the major contributors to the alteration of homeostasis, this work investigated the effects of a multi-ingredient dietary [...] Read more.
Background/Objectives: Dietary supplements are sources of nutrients or other substances that added to a healthy lifestyle help to preserve human homeostasis. Since inflammation is one of the major contributors to the alteration of homeostasis, this work investigated the effects of a multi-ingredient dietary supplement on human macrophages, cells involved in the inflammatory response. Methods: THP-1 cells were differentiated into macrophage-like cells and polarized in M1 or M2 phenotypes. Cell migration was evaluated by Boyden chamber assay; phenotypic markers by qRT-PCR; cytokine release by ELISA and LPS/ATP-induced pyroptosis by LDH assay. The antioxidant properties of the supplement were evaluated in human and mouse fibroblasts by DCF-DA assay. After supplement treatment, cell extracts were analyzed by HPLC-PDA-MS/MS and GC-MS to evaluate the presence of the ingredients. Results: Our results showed that the dietary supplement promoted M2 migration and polarization and significantly reduced migration of M1. In a model of LPS-induced inflammation in M0, it significantly reduced NF-κB activation, COX-2 expression, and cytokine release. The supplement was not a specific inhibitor of NLRP-3, but it was able to modulate LPS priming. In addition, the supplement decreased granulocyte adhesion to HUVEC and reduced the oxidative stress in fibroblasts. The analysis of cell extracts showed the presence of the following ingredients of the formulation inside the cells: CoQ10, spermidine, resveratrol, 5-hydroxytryptophan from Griffonia simplicifolia (Vahl ex DC.) Baill., bacosides from Bacopa monnieri (L.) Wettst, vit B2, B5, E acetate. Conclusions: Our results demonstrate how a combination of natural active ingredients may contribute to the maintenance of homeostasis in human cells. Full article
Show Figures

Figure 1

27 pages, 15398 KB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 - 7 Aug 2025
Viewed by 655
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

23 pages, 5771 KB  
Article
Photobiomodulation of 450 nm Blue Light on Human Keratinocytes, Fibroblasts, and Endothelial Cells: An In Vitro and Transcriptomic Study on Cells Involved in Wound Healing and Angiogenesis
by Jingbo Shao, Sophie Clément, Christoph Reissfelder, Patrick Téoule, Norbert Gretz, Feng Guo, Sabina Hajizada, Stefanie Uhlig, Katharina Mößinger, Carolina de la Torre, Carsten Sticht, Vugar Yagublu and Michael Keese
Biomedicines 2025, 13(8), 1876; https://doi.org/10.3390/biomedicines13081876 - 1 Aug 2025
Viewed by 406
Abstract
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human [...] Read more.
Background: Blue light (BL) irradiation has been shown to induce photobiomodulation (PBM) in cells. Here, we investigate its influence on cell types involved in wound healing. Methods: Cellular responses of immortalized human keratinocytes (HaCaTs), normal human dermal fibroblasts (NHDFs), and human umbilical vein endothelial cells (HUVECs) after light treatment at 450 nm were analyzed by kinetic assays on cell viability, proliferation, ATP quantification, migration assay, and apoptosis assay. Gene expression was evaluated by transcriptome analysis. Results: A biphasic effect was observed on HaCaTs, NHDFs, and HUVECs. Low-fluence (4.5 J/cm2) irradiation stimulated cell viability, proliferation, and migration. mRNA sequencing indicated involvement of transforming growth factor beta (TGF-β), ErbB, and vascular endothelial growth factor (VEGF) pathways. High-fluence (18 J/cm2) irradiation inhibited these cellular activities by downregulating DNA replication, the cell cycle, and mismatch repair pathways. Conclusions: HaCaTs, NHDFs, and HUVECs exhibited a dose-dependent pattern after BL irradiation. These findings broaden the view of PBM following BL irradiation of these three cell types, thereby promoting their potential application in wound healing and angiogenesis. Our data on low-fluence BL at 450 nm indicates clinical potential for a novel modality in wound therapy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

10 pages, 1973 KB  
Communication
Pro-Angiogenic Effects of Canine Platelet-Rich Plasma: In Vitro and In Vivo Evidence
by Seong-Won An and Young-Sam Kwon
Animals 2025, 15(15), 2260; https://doi.org/10.3390/ani15152260 - 1 Aug 2025
Viewed by 295
Abstract
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo [...] Read more.
Platelet-rich plasma (PRP) is widely applied in veterinary regenerative medicine due to its rich composition of growth factors that promote tissue repair. However, the direct pro-angiogenic function of canine PRP (cPRP) has not been thoroughly validated through controlled in vitro and in vivo experimentation. Human umbilical vein endothelial cells (HUVECs) were used to assess cell proliferation, migration, and tube formation after exposure to cPRP. In addition, a rabbit corneal micropocket assay was employed to evaluate in vivo angiogenic responses. Treatment with 20% cPRP significantly enhanced HUVEC proliferation and migration and induced robust tube formation. In the in vivo model, we observed dose-dependent neovascularization, with the earliest vascular sprouting seen on day 1 in the 40% group. Both models consistently demonstrated that cPRP stimulates vascular development in a concentration-dependent manner. This study provides novel evidence of cPRP’s capacity to induce neovascularization, supporting its therapeutic value for treating nonhealing wounds in dogs, especially in cases involving chronic inflammation, aging, or immune dysregulation. These findings offer a scientific foundation for the broader clinical application of cPRP in veterinary regenerative practice. Full article
Show Figures

Figure 1

19 pages, 4707 KB  
Article
Secondary Metabolites from Rehmannia glutinosa Protect Mitochondrial Function in LPS-Injured Endothelial Cells
by Liwen Zhong, Mengkai Lu, Huiqi Fang, Chao Li, Hua Qu and Gang Ding
Pharmaceuticals 2025, 18(8), 1125; https://doi.org/10.3390/ph18081125 - 27 Jul 2025
Viewed by 337
Abstract
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in [...] Read more.
Background: Rehmannia glutinosa, a traditional Chinese herb, is commonly used to treat vascular-related disorders. Sepsis-associated vascular endothelial dysfunction is closely associated with mitochondrial damage. This study investigated the protective effects of secondary metabolites from R. glutinosa against LPS-induced mitochondrial dysfunction in endothelial cells, providing potential therapeutic insights into sepsis-related vascular complications. Methods: Phytochemical profiling of fresh R. glutinosa roots was conducted, and the structures of new secondary metabolites (1 and 2) were elucidated through comprehensive spectroscopic analysis and ECD calculations. UPLC-Q-TOF-MS/MS characterized phenylethanoid glycosides. Mitochondrial function was assessed by measuring the membrane potential, ROS levels, and TOM20/DRP1 expression in LPS-injured HUVECs. Results: Two novel eremophilane-type sesquiterpenes, remophilanetriols J (1) and K (2), along with five known phenylethanoid glycosides (37), were isolated from the fresh roots of R. glutinosa. UPLC-Q-TOF-MS/MS analysis revealed unique fragmentation pathways for phenylethanoid glycosides (37). In LPS-injured HUVECs, all compounds collectively restored the mitochondrial membrane potential, attenuated ROS accumulation, and modulated TOM20/DRP1 expression. In particular, remophilanetriol K (2) exhibited potent protective effects at a low concentration (1.5625 μM). Conclusions: This study identifies R. glutinosa metabolites as potential therapeutics for sepsis-associated vascular dysfunction by preserving mitochondrial homeostasis. This study provides a mechanistic basis for the traditional use of R. glutinosa and offers valuable insights into the development of novel therapeutics targeting mitochondrial dysfunction in sepsis. Full article
Show Figures

Graphical abstract

16 pages, 2545 KB  
Article
Combined Pharmacological Conditioning of Endothelial Cells for Improved Vascular Graft Endothelialization
by Zhiyao Lu, Xuqian Zhou, Xiaowen Liu, Chunyan Liu, Junfeng Zhang and Lei Dong
Int. J. Mol. Sci. 2025, 26(15), 7183; https://doi.org/10.3390/ijms26157183 - 25 Jul 2025
Viewed by 257
Abstract
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway [...] Read more.
The development of functional endothelial monolayers on synthetic vascular grafts remains challenging, particularly for small-diameter vessels (<6 mm) prone to thrombosis. Here, we present a pharmacological strategy combining 8-(4-chlorophenylthio) adenosine 3′,5′-cyclic monophosphate sodium salt (pCPT-cAMP, a tight junction promoter) with nitric oxide/cGMP pathway agonists 3-morpholinosydnonimine (SIN-1), captopril, and sildenafil) to enhance endothelialization. In human umbilical vein endothelial cells (HUVECs), this four-agent cocktail induced a flat, extended phenotype with a 3-fold increased cell area and 57.5% fewer cells required for surface coverage compared to controls. Immunofluorescence analysis revealed enhanced ZO-1 expression and continuous tight junction formation, while sustained nitric oxide (NO) production (3.9-fold increase) and restored prostacyclin (PGI2) secretion demonstrated preserved endothelial functionality. Anticoagulation assays confirmed a significant reduction in thrombus formation (p < 0.01) via dual inhibition of platelet activation and thrombin binding. These findings establish a synergistic drug combination that promotes rapid endothelialization while maintaining antithrombogenic activity, offering a promising solution for small-diameter vascular grafts. Further studies should validate long-term stability and translational potential in preclinical models. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 3782 KB  
Article
Toxigenomic Evaluation of Diallyl Disulfide Effects and Its Association with the Chemotherapeutic Agent 5-Fluorouracil in Colorectal Cancer Cell Lines
by Estefani Maria Treviso, Caroline Andolfato Sanchez, Cecília Cristina Souza Rocha, Alexandre Ferro Aissa and Lusânia Maria Greggi Antunes
Nutrients 2025, 17(15), 2412; https://doi.org/10.3390/nu17152412 - 24 Jul 2025
Viewed by 391
Abstract
Background/Objectives: Colorectal cancer (CRC) is among the most prevalent malignant neoplasms globally. Chemotherapeutic treatment strategies have demonstrated minimal improvement over the past decade. Combination therapies, including those with nutraceuticals, are currently being investigated as promising alternatives to enhance therapeutic efficacy. The organosulfur [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is among the most prevalent malignant neoplasms globally. Chemotherapeutic treatment strategies have demonstrated minimal improvement over the past decade. Combination therapies, including those with nutraceuticals, are currently being investigated as promising alternatives to enhance therapeutic efficacy. The organosulfur garlic extract diallyl disulfide (DADS) has demonstrated anti-tumoral activity in several types of cancer. This study aimed to investigate the effects of DADS and 5-fluorouracil (5-FU), both individually and in combination, on the human CRC cell lines Caco-2 and HT-29. Methods: Caco-2, HT-29, and non-tumoral human umbilical vein endothelial cells (HUVEC) were exposed to DADS (25–600 µM) and 5-FU (5–100 µM), either individually or in simultaneous combination (DADS 100 µM + 5-FU 100 µM), for 24 h. Cytotoxicity was evaluated in all three cell lines. In addition, the effects of these treatments on oxidative stress, cell migration, genotoxicity, cell death, global DNA methylation, and gene–nutraceutical interactions were assessed in both tumor cell lines. Results: DADS demonstrated cytotoxic effects at high concentrations in Caco-2, HT-29, and HUVECs and induced DNA damage in both colorectal cancer cell lines. The combination of DADS and 5-FU significantly promoted apoptotic cell death, increased genotoxicity, elevated global DNA methylation, and inhibited cell migration, with these effects being particularly pronounced in HT-29 cells. Conclusions: We provide evidence that DADS combined with 5-FU is potentially useful in the therapy of CRC. However the combination of nutraceuticals and chemotherapy must consider the distinct molecular and phenotypic characteristics of each tumor cell line. Full article
(This article belongs to the Special Issue Advances in Gene–Diet Interactions and Human Health)
Show Figures

Figure 1

16 pages, 2130 KB  
Article
A Distinct miRNA Profile in Intimal Hyperplasia of Failed Arteriovenous Fistulas Reveals Key Pathogenic Pathways
by Carmen Ciavarella, Francesco Vasuri, Alessio Degiovanni, Lena Christ, Raffaella Mauro, Mauro Gargiulo and Gianandrea Pasquinelli
Biomolecules 2025, 15(8), 1064; https://doi.org/10.3390/biom15081064 - 23 Jul 2025
Viewed by 414
Abstract
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of [...] Read more.
Intimal hyperplasia (IH) compromises the patency of arteriovenous fistula (AVF) vascular access in patients with end-stage kidney disease. Uncontrolled cell proliferation and migration, driven by inflammation, shear stress and surgery, are well-known triggers in IH. Recently, microRNAs (miRNAs) have emerged as regulators of core mechanisms in cardiovascular diseases and as potential markers of IH. This study was aimed at identifying a specific miRNA panel in failed AVFs and clarifying the miRNA involvement in IH. miRNA profiling performed in tissues from patients with IH (AVFs) and normal veins (NVs) highlighted a subset of four miRNAs significantly deregulated (hsa-miR-155-5p, hsa-miR-449a-5p, hsa-miR-29c-3p, hsa-miR-194-5p) between the two groups. These miRNAs were analyzed in tissue-derived cells (NVCs and AVFCs), human aortic smooth muscle cells (HAOSMCs) and human umbilical vein endothelial cells (HUVECs). The panel of hsa-miR-449a-5p, hsa-miR-155-5p, hsa-miR-29c-3p and hsa-miR-194-5p was up-regulated in AVFCs, HAOSMCs and HUVEC under inflammatory stimuli. Notably, overexpression of hsa-miR-449a-5p exacerbated the proliferative, migratory and inflammatory features of AVFCs. In vitro pharmacological modulation of these miRNAs with pioglitazone, particularly the down-regulation of hsa-miR-155-5p and hsa-miR-29c-3p, suggested their involvement in IH pathogenesis and a potential translational application. Overall, these findings provide new insights into the pathogenesis of AVF failure, reinforcing the miRNA contribution to IH detection and prevention. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

27 pages, 3554 KB  
Article
Impact of Poly(Lactic Acid) and Graphene Oxide Nanocomposite on Cellular Viability and Proliferation
by Karina Torres Pomini, Júlia Carolina Ferreira, Laira Mireli Dias da Silva, Paulo Gabriel Friedrich Totti, Monique Gonçalves Alves, Eliana de Souza Bastos Mazuqueli Pereira, Marcelo Melo Soares, Durvanei Augusto Maria and Rose Eli Grassi Rici
Pharmaceutics 2025, 17(7), 892; https://doi.org/10.3390/pharmaceutics17070892 - 9 Jul 2025
Viewed by 521
Abstract
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human [...] Read more.
Background/Objectives: Although the nanocomposite of poly(L-lactic acid) with graphene oxide (PLLA-GO) shows promise for tissue engineering, its specific bioactive interactions with diverse cell lineages during early tissue regeneration remain unclear. This study comprehensively investigated the in vitro multifaceted biocompatibility of PLLA-GO using human fibroblasts (FN1 cells), murine mesenchymal stem cells (mBMSCs), and human umbilical vein endothelial cells (HUVECs). Methods: Morphological analyses were performed using optical and scanning electron microscopy, while proliferation dynamics were assessed via CFSE staining. Cell cycle progression was evaluated using flow cytometry, mitochondrial activity was examined through TMRE staining, and inflammatory cytokine profiling was performed via Cytometric Bead Array (CBA). Results: PLLA-GO exhibited primary biocompatibility across all evaluated cell lines, characterized by efficient adhesion and proliferation. However, significant cell-type-dependent modulations were observed. The FN1 cells exhibited proliferative adaptation but induced accelerated scaffold degradation, as evidenced by a substantial increase in cellular debris (5.93% control vs. 34.38% PLLA-GO; p = 0.03). mBMSCs showed a transient initial proliferative response and a significant 21.66% increase in TNF-α production (179.67 pg/mL vs. 147.68 pg/mL in control; p = 0.03). HUVECs demonstrated heightened mitochondrial sensitivity, exhibiting a 32.19% reduction in mitochondrial electrical potential (97.07% control vs. 65.82% PLLA-GO; p ≤ 0.05), alongside reductions in pro-inflammatory cytokines TNF-α (8.73%) and IL-6 (12.47%). Conclusions: The PLLA-GO processing method is crucial for its properties and subsequent cellular interactions. Therefore, rigorous and specific preclinical evaluations—considering both cellular contexts and fabrication—are indispensable to ensure the safety and therapeutic potential of PLLA-GO in tissue engineering and regenerative medicine. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

25 pages, 947 KB  
Article
Synthetic Analogs of the Alkaloid Cassiarin A with Enhanced Antimalarial Activity
by Thomas Klaßmüller, Timo Reiß, Florian Lengauer, Che Julius Ngwa, Karin Bartel, Gabriele Pradel and Franz Bracher
Pharmaceuticals 2025, 18(7), 1018; https://doi.org/10.3390/ph18071018 - 9 Jul 2025
Viewed by 433
Abstract
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which [...] Read more.
Background: Among the alkaloids from Cassia siamea, cassiarin A has outstanding antiprotozoal activity, but structure–activity relationships for this chemotype were only poorly understood until now. Methods: We worked out efficient approaches to hitherto underexplored analogs (12 examples) on three synthesis routes which mainly comprised variations in the methyl groups at C-2 and C-5. The new compounds were tested for antiprotozoal and cytotoxic activities. Results: Introduction of a (substituted) benzene ring at C-2 led to a significant enhancement of activity against Plasmodium falciparum, while modifications of the methyl group at C-5 and the phenolic group had detrimental effects. Two of the 2-phenyl analogs further showed a resistance index comparable to the one of the reference drug chloroquine. Although the novel derivatives did not show hemolytic effects, investigation on human endothelial (HUVEC) cells at relevant concentrations indicated strong cytotoxic effects on human cells. Conclusions: Systematic structure modifications of cassiarin A led to a significant enhancement of antiplasmodial activity, but the observed strong cytotoxicity to human cells renders this library of cassiarin A derivatives inadequate for drug development. Full article
(This article belongs to the Special Issue Natural Products-Assisted Organic Synthesis in Medicinal Chemistry)
Show Figures

Graphical abstract

22 pages, 17031 KB  
Article
AZU1 as a DNA Methylation-Driven Gene: Promoting Oxidative Stress in High-Altitude Pulmonary Edema
by Qiong Li, Zhichao Xu, Qianhui Gong, Liyang Chen, Xiaobing Shen and Xiaowei Chen
Antioxidants 2025, 14(7), 835; https://doi.org/10.3390/antiox14070835 - 8 Jul 2025
Viewed by 495
Abstract
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA [...] Read more.
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA methylation chips, identifying key differentially methylated regions (DMRs). Targeted bisulfite sequencing (TBS) revealed significant abnormalities in DMRs of five genes, azurocidin 1 (AZU1), growth factor receptor bound protein 7 (GRB7), mannose receptor C-type 2 (MRC2), RUNX family transcription factor 3 (RUNX3), and septin 9 (SEPT9). The abnormal expression of AZU1 was validated using peripheral blood leukocytes from HAPE patients and normal controls, as well as rat lung tissue, indicating its potential importance in the pathogenesis of HAPE. To further validate the function of AZU1, we conducted experimental studies using a hypobaric hypoxia injury model in Human Umbilical Vein Endothelial Cells (HUVEC). The results showed that AZU1 was significantly upregulated under hypobaric hypoxia. Knocking down AZU1 mitigates the reduction in HUVEC proliferation, angiogenesis, and oxidative stress damage induced by acute hypobaric hypoxia. AZU1 induces cellular oxidative stress via the p38/mitogen-activated protein kinase (p38/MAPK) signaling pathway. This study is the first to elucidate the mechanism of AZU1 in HAPE via the p38/MAPK pathway, offering novel insights into the molecular pathology of HAPE and laying a foundation for future diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

Back to TopTop