Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,011)

Search Parameters:
Keywords = ICP-OES

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3828 KB  
Article
Effects of Fluid Inclusion Component Release on Flotation Behavior of Fluorite Minerals
by Renji Zheng, Shilin Hong, Sheng Wang, Honghu Tang and Zhiyong Gao
Minerals 2025, 15(9), 912; https://doi.org/10.3390/min15090912 - 27 Aug 2025
Abstract
Fluid inclusions, ubiquitously present within fluorite during diagenesis and mineralization, are released as inevitable ionic components in the pulp during mineral crushing and grinding. This study, grounded in geochemistry, combined microstructural analysis, spectroscopy, and X-ray computed tomography (X-CT) to investigate the morphology and [...] Read more.
Fluid inclusions, ubiquitously present within fluorite during diagenesis and mineralization, are released as inevitable ionic components in the pulp during mineral crushing and grinding. This study, grounded in geochemistry, combined microstructural analysis, spectroscopy, and X-ray computed tomography (X-CT) to investigate the morphology and petrographic characteristics of fluid inclusions in fluorite minerals. Building on this foundation, inductively coupled plasma optical emission spectrometry (ICP-OES) and ion chromatography (IC) were employed to analyze the release patterns of fluid inclusion components and their impact on fluorite flotation. The results reveal that fluid inclusions within fluorite are predominantly liquid-rich, two-phase (vapor-liquid) inclusions, exhibiting a spatial distribution density as high as 14.1%. Furthermore, fluid components are released during fluorite grinding, particularly homonymous Ca2+ ions, which significantly influence fluorite flotation behavior. Low concentrations of Ca2+ can activate fluorite flotation, whereas high concentrations of Ca2+ consume the collector (sodium oleate) in solution through competitive adsorption. This competition inhibits the adsorption of sodium oleate onto the fluorite mineral surface. The findings of this research provide theoretical support for in-depth studies on fluid inclusions in minerals and their effects on mineral flotation behavior, thereby facilitating the clean and efficient recovery of strategic fluorite mineral resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

26 pages, 3819 KB  
Article
Chemical Interactions of Deicing Salts with Concrete Pastes Containing Slag Cement
by Mohsen Torabi and Peter C. Taylor
Materials 2025, 18(17), 3962; https://doi.org/10.3390/ma18173962 - 24 Aug 2025
Viewed by 330
Abstract
Chloride-based deicing salt solutions have been contacted with concrete pastes containing slag cement at different conditions, such as slag replacement (20–80%), type (CaCl2, MgCl2, NaCl), and concentration (1 M–5 M) of the deicing salt, as well as temperature (ambient [...] Read more.
Chloride-based deicing salt solutions have been contacted with concrete pastes containing slag cement at different conditions, such as slag replacement (20–80%), type (CaCl2, MgCl2, NaCl), and concentration (1 M–5 M) of the deicing salt, as well as temperature (ambient & −18 °C), and the extent of their reactions have been studied using XRD and ICP-OES. Also, solubility of Friedel salt (FS) has been measured in different types and concentrations of deicing salt solutions. It has been observed that the chemical deterioration arising from the formation and then dissolution of FS is more significant than the damage caused by the formation and expansion of oxychlorides in the pastes containing slag. While calcium oxychloride in its dried form can linger inside the paste for a long time, FS undergoes incongruent dissolution in CaCl2 and MgCl2 solutions and leaves the system. Presence of higher levels of AFm phases in pastes containing slag will further underscore this phenomenon. The extent of this chemical deterioration is relatively lower in NaCl solutions. Also, it was found that the nature of the chemical interaction changes with the concentration of the salt, as some disappeared phases might reappear and then disappear again. Using XRD and ICP-OES, this study provides a mechanistic understanding of salt-induced chemical deterioration in slag cement pastes by identifying phase-specific vulnerabilities and tracking the formation, transformation, and dissolution of key phases, such as Friedel’s salt and calcium oxychloride; additionally, the influence of various parameters have been studied, and chemical mechanisms have been proposed. Full article
Show Figures

Figure 1

18 pages, 7705 KB  
Article
Mineral Liberation Analysis (MLA)-Based Characterization of Lithium Source: Biotite and Associated Minerals in Nepheline Syenites
by Zeynep Üçerler-Çamur, Ozgul Keles and Murat Olgaç Kangal
Minerals 2025, 15(8), 876; https://doi.org/10.3390/min15080876 - 20 Aug 2025
Viewed by 199
Abstract
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are [...] Read more.
Due to the rapid advancement of technology, lithium carbonate has become a crucial raw material for battery storage applications. Brines remain the primary source, while lithium carbonate production from ores is limited. Therefore, expanding resources, identifying potential deposits, and characterizing existing sources are essential. Direct lithium detection via MLA is challenging due to its atomic number being below 6; however, it can be indirectly identified through lithium-bearing biotite. This study characterizes lithium-bearing biotite in nepheline syenite ore, considering biotite as the primary lithium source. Analytical methods included MLA, modal mineralogy, XRD, ICP-OES, XRF, SEM-BSE, and EDS. The ore contained 4% biotite, with a liberation degree exceeding 70% in particles finer than 500 µm. Biotite formed binary, ternary, and complex associations with K-feldspar, nepheline, and albite. Finer particle sizes increased biotite liberation while reducing associations; no binary biotite–nepheline associations were detected below 75 µm. EDS spectra confirmed biotite as the sole lithium-bearing mineral. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 2819 KB  
Article
Stormwater in the Desert: Unveiling Metal Pollutants in Climate-Intensified Flooding in the United Arab Emirates
by Lara Dronjak, Sofian Kanan, Tarig Ali, Md Maruf Mortula, Areej Mohammed, Jonathan Navarro Ramos, Diana S. Aga and Fatin Samara
Water 2025, 17(16), 2457; https://doi.org/10.3390/w17162457 - 19 Aug 2025
Viewed by 371
Abstract
This study investigated the concentrations of metals in stormwater runoff collected during two extreme flooding events on the American University of Sharjah (AUS) campus in the United Arab Emirates (UAE). Given the increasing frequency of intense rainfall in arid regions, stormwater contamination represents [...] Read more.
This study investigated the concentrations of metals in stormwater runoff collected during two extreme flooding events on the American University of Sharjah (AUS) campus in the United Arab Emirates (UAE). Given the increasing frequency of intense rainfall in arid regions, stormwater contamination represents a growing environmental and public health concern. Stormwater samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES) to quantify metal concentrations. The results showed that iron (0.049–2.080 mg/L), aluminum (0.097–2.020 mg/L), and potassium (0.614–3.860 mg/L) were the most abundant metals detected. Lower concentrations were observed for manganese (0.000–0.058 mg/L), barium (0.000–0.073 mg/L), chromium (0.000–0.013 mg/L), nickel (0.000–0.038 mg/L), and vanadium (0.000–0.004 mg/L). These findings underscore the critical need for effective stormwater management in arid regions, where climate change is expected to increase the frequency and intensity of extreme weather events. Improved drainage systems and long-term monitoring are essential to mitigate the environmental and public health risks posed by stormwater contamination in rapidly urbanizing areas. Full article
Show Figures

Figure 1

18 pages, 3613 KB  
Article
Early Biological Response to Poly(ε-caprolactone) PCL—Bioactive Glass Composites Obtained by 3D Printing as Bone Substitutes
by Alessandro Mosca Balma, Riccardo Pedraza, Ilaria Roato, Clarissa Orrico, Sara Meinardi, Stefano Bertinetti, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Donatella Duraccio, Giulio Malucelli, Marta Miola, Enrica Verné and Federico Mussano
Polymers 2025, 17(16), 2229; https://doi.org/10.3390/polym17162229 - 15 Aug 2025
Viewed by 597
Abstract
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or [...] Read more.
The increasing demand for smart bone substitutes has boosted the implementation of biomaterials possibly endowed with both pro-osteogenic and pro-angiogenic capabilities, among which bioactive glasses hold great potential. Hence, two Poly(ε-caprolactone) (PCL)-based composites were loaded at 10 wt.%, with either pristine (SBA3) or copper-doped (SBA3_Cu) silica-based bioactive glasses, through a solvent casting method with chloroform. Neat PCL was used as a control. Samples produced by 3D printing underwent SEM and EDX analyses, and the following were measured: tensile strength and hardness, surface roughness, ion release through ICP-OES, surface free energy, and optical contact angle. Adipose-derived mesenchymal stem cells (ASCs) and human microvascular endothelial cells (HMEC-1) were used to test the biocompatibility of the materials through cell adhesion, spreading, and viability assays. A significant improvement in tensile strength and hardness was observed especially with Cu-doped composites. Both SBA3 and SBA3_Cu added to the PCL favored the early adhesion and the proliferation of HMEC-1 after 3 and 7 days, while ASCs proliferated significantly the most on the SBA-containing composite, at all the time points. Cellular morphology analysis highlighted interesting adaptation patterns to the samples. Further biological characterizations are needed to understand thoroughly how specific bioactive glasses may interact with different cellular types. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

30 pages, 9508 KB  
Article
An Improved XGBoost Model for Development Parameter Optimization and Production Forecasting in CO2 Water-Alternating-Gas Processes: A Case Study of Low Permeability Reservoirs in China
by Bin Su, Junchao Li, Jixin Li, Changjian Han and Shaokang Feng
Processes 2025, 13(8), 2506; https://doi.org/10.3390/pr13082506 - 8 Aug 2025
Viewed by 272
Abstract
The pronounced heterogeneity and geological complexity of low-permeability reservoirs pose significant challenges to parameter optimization and performance prediction during the development of CO2 water-alternating-gas (CO2-WAG) injection processes. This study introduces a predictive model based on the Extreme Gradient Boosting (XGBoost) [...] Read more.
The pronounced heterogeneity and geological complexity of low-permeability reservoirs pose significant challenges to parameter optimization and performance prediction during the development of CO2 water-alternating-gas (CO2-WAG) injection processes. This study introduces a predictive model based on the Extreme Gradient Boosting (XGBoost) algorithm, trained on 1225 multivariable numerical simulation cases of CO2-WAG injection. To enhance the model’s performance, four advanced metaheuristic algorithms—Collective Parallel Optimization (CPO), Grey Wolf Optimization (GWO), Artificial Hummingbird Algorithm (AHA), and Black Kite Algorithm (BKA)—were applied for hyperparameter tuning. Among these, the CPO algorithm demonstrated superior performance due to its ability to balance global exploration with local exploitation in high-dimensional, complex optimization problems. Additionally, the integration of Chebyshev chaotic mapping and Elite Opposition-Based Learning (EOBL) strategies further improved the algorithm’s efficiency and adaptability, leading to the development of the ICPO (Improved Crowned Porcupine Optimization)-XGBoost model. Rigorous evaluation of the model, including comparative analyses, cross-validation, and real-case simulations, demonstrated its exceptional predictive capacity, with a coefficient of determination of 0.9894, a root mean square error of 2.894, and errors consistently within ±2%. These results highlight the model’s robustness, reliability, and strong generalization capabilities, surpassing traditional machine learning methods and other state-of-the-art boosting-based ensemble algorithms. In conclusion, the ICPO-XGBoost model represents an efficient and reliable tool for optimizing the CO2-WAG process in low-permeability reservoirs. Its exceptional predictive accuracy, robustness, and generalization capability make it a highly valuable asset for practical reservoir management and strategic decision-making in the oil and gas industry. Full article
(This article belongs to the Special Issue Applications of Intelligent Models in the Petroleum Industry)
Show Figures

Figure 1

10 pages, 1157 KB  
Communication
Phytoremediation of Zinc-Contaminated Industrial Effluents with Phragmites australis and Typha latifolia in Constructed Wetlands
by Inga Zinicovscaia, Aneta Svozilíková Krakovská, Nikita Yushin, Alexandra Peshkova and Dmitrii Grozdov
Water 2025, 17(16), 2358; https://doi.org/10.3390/w17162358 - 8 Aug 2025
Viewed by 403
Abstract
This study evaluated the ability of two plants, Phragmites australis and Typha latifolia, to bioaccumulate zinc from industrial effluents in constructed wetlands using ceramsite as a support medium. Two types of experiments were conducted: one with real industrial effluent containing 9.4 mg/L [...] Read more.
This study evaluated the ability of two plants, Phragmites australis and Typha latifolia, to bioaccumulate zinc from industrial effluents in constructed wetlands using ceramsite as a support medium. Two types of experiments were conducted: one with real industrial effluent containing 9.4 mg/L of Zn and another with synthetic effluent containing Zn at concentrations ranging from 10 to 100 mg/L. Zinc uptake in plant segments, ceramsite, and its concentration in wastewater were determined using ICP-OES. Both plants removed 97–99% of zinc ions from the industrial effluent, with the highest metal uptake occurring in the roots. In the case of synthetic solutions, Typha latifolia demonstrated higher zinc removal efficiency (95–99% removal) compared to Phragmites australis (74–90%). Typha latifolia also accumulated significantly higher levels of Zn, primarily in the roots. Transfer factor values were calculated to assess zinc translocation within plant tissues. No visual signs of toxicity were observed during the experiment. This phytoremediation approach could represent a sustainable and environmentally friendly method for treating industrial effluents. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

21 pages, 1788 KB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Viewed by 539
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

11 pages, 3000 KB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 318
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

7 pages, 1048 KB  
Data Descriptor
Dataset of Morphometry and Metal Concentrations in Coptodon rendalli and Oreochromis mossambicus from the Shongweni Dam, South Africa
by Smangele Ncayiyana, Neo Mashila Maleka and Jeffrey Lebepe
Data 2025, 10(8), 124; https://doi.org/10.3390/data10080124 - 1 Aug 2025
Viewed by 349
Abstract
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of [...] Read more.
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of Coptodon rendalli and Oreochromis mossambicus, and metal bioaccumulation. Sampling was conducted during the dry (July–August) and wet seasons (November and December) in 2021. Water was sampled using acid-pre-treated sampling bottles, whereas sediment was collected using the Van Veen grab at the inflow, middle, and dam wall. Fish were collected, and their tissues were digested using aqua regia. Metal concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). This data manuscript reports the physical parameters of the water and concentrations of antimony, arsenic, cadmium, copper, iron, manganese, lead, selenium, and strontium in the water and sediment from the Shongweni Dam. Moreover, the fish morphometric data and metal concentrations observed in the muscle are also presented. This data could be used as baseline information on metal concentrations in the Shongweni Dam. Moreover, it provides insight into the potential impact of wastewater effluents on metal increases in freshwater bodies. Full article
Show Figures

Figure 1

16 pages, 4017 KB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 276
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

19 pages, 7490 KB  
Article
Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings
by Mate Czagany, Gabor Meszaros, Daniel Koncz-Horvath, Adrienn Hlavacs, Mark Windisch, Byungil Hwang and Peter Baumli
Materials 2025, 18(15), 3544; https://doi.org/10.3390/ma18153544 - 29 Jul 2025
Viewed by 301
Abstract
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure [...] Read more.
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure of the coating consists of 0.8–10 µm particles, with an X-ray amorphous phase structure. The surface morphology and porosity of the coating can be tuned simply by changing the etching time. The supercapacitive performance of the electrodes was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements. The capacitance of the coating was found to vary on the etching time according to a maximum function, allowing for the determination of an optimal duration to obtain a specific capacitance of 157 mF/cm2 (at 0.5 A/g). An excellent charge storage retention of 178% was found after 5000 CV cycles at a scan rate of 50 mV/s owing to the evolved electrochemically active network on the surface of the electrode, indicating a long-term stable and reliable electrode. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 1509 KB  
Article
Nanocellulose Application for Metal Adsorption and Its Effect on Nanofiber Thermal Behavior
by Wanderson Ferreira Braz, Lucas Tonetti Teixeira, Rogério Navarro and Omar Ginoble Pandoli
Metals 2025, 15(8), 832; https://doi.org/10.3390/met15080832 - 25 Jul 2025
Viewed by 437
Abstract
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room [...] Read more.
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room temperature of 89.3% (Hg2+) and 100% (Mg2+) for TCNF, 35.2% (Hg2+) and 63.3% (Na+) for SCNC after 3 h of contact. Interestingly, the nanofibers exhibited a distinct thermal degradation profile (characterized by two main events) compared to that of cellulose, suggesting that their nanostructured morphology and surface functionalization may enhance thermal instability. Additionally, the presence of metals at its surface notably altered the thermal degradation kinetics, as observed for mercury and magnesium in TCNF. Finally, the results for SCNC strongly suggest that the mechanism for thermal degradation can also change, as observed for mercury and sodium, expressed through the appearance of a new DTG peak located around 300 °C. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

20 pages, 2822 KB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 449
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 1704 KB  
Article
Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization
by Ting Luo, Weihua Huang, Riheng Chen, Furong Chen, Jinke Chen, Zhenlin Hu and Junfei Nie
Chemosensors 2025, 13(8), 271; https://doi.org/10.3390/chemosensors13080271 - 23 Jul 2025
Viewed by 381
Abstract
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of [...] Read more.
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of water hardness by combining one-point calibration laser-induced breakdown spectroscopy (OPC–LIBS) and aerosolization. First, the water samples are aerosolized via the aerosol generation device and the LIBS spectra of aerosols are obtained. Then, a modified OPC–LIBS model is used to determine the elemental contents of the aerosols via LIBS spectra, in which the plasma temperature is calculated using the Multi-Element Saha–Boltzmann (ME–SB) plot. One suitable standard liquid sample (the concentrations of Ca, Mg, and Sr were 50 mg/L, 50 mg/L, and 500 mg/L, respectively) was selected to evaluate the quantitative performance of the modified OPC–LIBS. Then, the Ca and Mg concentrations in the three real water samples (from the Yangtze River, reservoir, and underground) were detected and quantified by the proposed method, and the quantitative results of three LIBS calibration methods were compared with that of inductively coupled plasma optical emission spectroscopy (ICP–OES). The average relative error of Ca and Mg found in the OPC–LIBS results was lower by 22.23% than the internal standard method and 14.50% lower than the external standard method. The method combining modified OPC–LIBS and aerosolization can achieve high-precision rapid quantification of water hardness detection, which provides a new path for rapid detection of water hardness and is expected to make online detection a reality in the water quality testing field. Full article
Show Figures

Graphical abstract

Back to TopTop