Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = IPostC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8616 KB  
Article
Ischemic Postconditioning Regulates New Cell Death Mechanisms in Stroke: Disulfidptosis
by Shanpeng Liu, Qike Wu, Can Xu, Liping Wang, Jialing Wang, Cuiying Liu and Heng Zhao
Biomolecules 2024, 14(11), 1390; https://doi.org/10.3390/biom14111390 - 31 Oct 2024
Cited by 2 | Viewed by 1837
Abstract
Background and Objective: Stroke poses a critical health issue without effective neuroprotection. We explore ischemic postconditioning’s (IPostC) potential to mitigate stroke-induced brain injury, focusing on its interaction with disulfidptosis, a novel cell death pathway marked by protein disulfide accumulation. We aim to clarify [...] Read more.
Background and Objective: Stroke poses a critical health issue without effective neuroprotection. We explore ischemic postconditioning’s (IPostC) potential to mitigate stroke-induced brain injury, focusing on its interaction with disulfidptosis, a novel cell death pathway marked by protein disulfide accumulation. We aim to clarify IPostC’s protective mechanisms against stroke through gene sequencing and experimental analysis in mice. Methods: Through our initial investigation, we identified 27 disulfidptosis-related genes (DRGs) and uncovered their interactions. Additionally, differential gene analysis revealed 11 potential candidate genes that are linked to disulfidptosis, stroke, and IPostC. Our comprehensive study employed various analytical approaches, including machine learning, functional enrichment analysis, immune analysis, drug sensitivity analysis, and qPCR experiments, to gain insights into the molecular mechanisms underlying these processes. Results: Our study identified and expanded the list of disulfidptosis-related genes (DRGs) critical to stroke, revealing key genes and their interactions. Through bioinformatics analyses, including PCA, UMAP, and differential gene expression, we were able to differentiate the effects of stroke from those of postconditioning, identifying Peroxiredoxin 1 (PRDX1) as a key gene of interest. GSEA highlighted PRDX1’s involvement in protective pathways against ischemic damage, while its correlations with various proteins suggest a broad impact on stroke pathology. Constructing a ceRNA network and analyzing drug sensitivities, we explored PRDX1’s regulatory mechanisms, proposing novel therapeutic avenues. Additionally, our immune infiltration analysis linked PRDX1 to key immune cells, underscoring its dual role in stroke progression and recovery. PRDX1 is identified as a key target in ischemic stroke based on colocalization analysis, which revealed that PRDX1 and ischemic stroke share the causal variant rs17522918. The causal relationship between PRDX1-related methylation sites (cg02631906 and cg08483560) and the risk of ischemic stroke further validates PRDX1 as a crucial target. Conclusions: These results suggest that the DRGs are interconnected with various cell death pathways and immune processes, potentially contributing to IPostC regulating cell death mechanisms in stroke. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Ischemic Stroke)
Show Figures

Figure 1

19 pages, 3717 KB  
Article
Transcriptional Alterations by Ischaemic Postconditioning in a Pig Infarction Model: Impact on Microvascular Protection
by Dominika Lukovic, Alfred Gugerell, Katrin Zlabinger, Johannes Winkler, Noemi Pavo, Tamás Baranyai, Zoltán Giricz, Zoltán V. Varga, Martin Riesenhuber, Andreas Spannbauer, Denise Traxler, András Jakab, Rita Garamvölgyi, Örs Petnehazy, Dietmar Pils, Levente Tóth, Rainer Schulz, Péter Ferdinandy and Mariann Gyöngyösi
Int. J. Mol. Sci. 2019, 20(2), 344; https://doi.org/10.3390/ijms20020344 - 15 Jan 2019
Cited by 12 | Viewed by 5011
Abstract
Although the application of cardioprotective ischaemia/reperfusion (I/R) stimuli after myocardial infarction (MI) is a promising concept for salvaging the myocardium, translation to a clinical scenario has not fulfilled expectations. We have previously shown that in pigs, ischaemic postconditioning (IPostC) reduces myocardial oedema and [...] Read more.
Although the application of cardioprotective ischaemia/reperfusion (I/R) stimuli after myocardial infarction (MI) is a promising concept for salvaging the myocardium, translation to a clinical scenario has not fulfilled expectations. We have previously shown that in pigs, ischaemic postconditioning (IPostC) reduces myocardial oedema and microvascular obstruction (MVO), without influencing myocardial infarct size. In the present study, we analyzed the mechanisms underlying the IPostC-induced microvascular protection by transcriptomic analysis, followed by pathway analysis. Closed-chest reperfused MI was induced by 90 min percutaneous balloon occlusion of the left anterior descending coronary artery, followed by balloon deflation in anaesthetised pigs. Animals were randomised to IPostC (n = 8), MI (non-conditioned, n = 8), or Control (sham-operated, n = 4) groups. After three hours or three days follow-up, myocardial tissue samples were harvested and subjected to RNA-seq analysis. Although the transcriptome analysis revealed similar expression between IPostC and MI in transcripts involved in cardioprotective pathways, we identified gene expression changes responding to IPostC at the three days follow-up. Focal adhesion signaling, downregulated genes participating in cardiomyopathy and activation of blood cells may have critical consequences for microvascular protection. Specific analyses of the gene subsets enriched in the endothelium of the infarcted area, revealed strong deregulation of transcriptional functional clusters, DNA processing, replication and repair, cell proliferation, and focal adhesion, suggesting sustentative function in the endothelial cell layer protection and integrity. The spatial and time-dependent transcriptome analysis of porcine myocardium supports a protective effect of IPostC on coronary microvasculature post-MI. Full article
Show Figures

Graphical abstract

16 pages, 3644 KB  
Article
Myocardial Ischemic Postconditioning Promotes Autophagy against Ischemia Reperfusion Injury via the Activation of the nNOS/AMPK/mTOR Pathway
by Maojuan Hao, Suhua Zhu, Liang Hu, Hongyi Zhu, Xiaowei Wu and Qingping Li
Int. J. Mol. Sci. 2017, 18(3), 614; https://doi.org/10.3390/ijms18030614 - 11 Mar 2017
Cited by 60 | Viewed by 8167
Abstract
Autophagy participates in the progression of many diseases, comprising ischemia/ reperfusion (I/R). It is reported that it is involved in the protective mechanism of ischemic postconditioning (IPostC). According to research, neuronal nitric oxide synthase (nNOS) is also involved in the condition of I/R [...] Read more.
Autophagy participates in the progression of many diseases, comprising ischemia/ reperfusion (I/R). It is reported that it is involved in the protective mechanism of ischemic postconditioning (IPostC). According to research, neuronal nitric oxide synthase (nNOS) is also involved in the condition of I/R and IPostC. However, the relationship between nNOS, autophagy and IPostC has not been previously investigated. We hypothesize that IPostC promotes autophagy activity against I/R injury partially through nNOS-mediated pathways. Mouse hearts were subjected to I/R injury through the ligation of the left anterior descending coronary artery. H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. IPostC, compared with I/R, restored nNOS activity, increased the formation of autophagosome and restored the impaired autophagic flux, thus autophagic activity was raised markedly. IPostC increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and suppressed mammalian target of rapamycin (mTOR), but a selective nNOS inhibitor abolished those effects. Similar effects of IPostC were demonstrated in H9c2 cells in vitro. IPostC decreased infarct size and preserved most of the normal structure. The level of reactive oxygen species (ROS) and cell apoptosis were reduced by IPostC with improved cell viability and mitochondrial membrane potential. However, an autophagy inhibitor suppressed the protective effects. These results suggest that IPostC promoted autophagy against I/R injury at least partially via the activation of nNOS/AMPK/mTOR pathway. Full article
(This article belongs to the Special Issue Improvement of Cardiac Function in Heart Failure 2017)
Show Figures

Graphical abstract

Back to TopTop