Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (496)

Search Parameters:
Keywords = Industrial Internet of Things (IIoT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1672 KB  
Article
Optimizing Robotic Disassembly-Assembly Line Balancing with Directional Switching Time via an Improved Q(λ) Algorithm in IoT-Enabled Smart Manufacturing
by Qi Zhang, Yang Xing, Man Yao, Xiwang Guo, Shujin Qin, Haibin Zhu, Liang Qi and Bin Hu
Electronics 2025, 14(17), 3499; https://doi.org/10.3390/electronics14173499 - 1 Sep 2025
Abstract
With the growing adoption of circular economy principles in manufacturing, efficient disassembly and reassembly of end-of-life (EOL) products has become a key challenge in smart factories. This paper addresses the Disassembly and Assembly Line Balancing Problem (DALBP), which involves scheduling robotic tasks across [...] Read more.
With the growing adoption of circular economy principles in manufacturing, efficient disassembly and reassembly of end-of-life (EOL) products has become a key challenge in smart factories. This paper addresses the Disassembly and Assembly Line Balancing Problem (DALBP), which involves scheduling robotic tasks across workstations while minimizing total operation time and accounting for directional switching time between disassembly and assembly phases. To solve this problem, we propose an improved reinforcement learning algorithm, IQ(λ), which extends the classical Q(λ) method by incorporating eligibility trace decay, a dynamic Action Table mechanism to handle non-conflicting parallel tasks, and switching-aware reward shaping to penalize inefficient task transitions. Compared with standard Q(λ), these modifications enhance the algorithm’s global search capability, accelerate convergence, and improve solution quality in complex DALBP scenarios. While the current implementation does not deploy live IoT infrastructure, the architecture is modular and designed to support future extensions involving edge-cloud coordination, trust-aware optimization, and privacy-preserving learning in Industrial Internet of Things (IIoT) environments. Four real-world disassembly-assembly cases (flashlight, copier, battery, and hammer drill) are used to evaluate the algorithm’s effectiveness. Experimental results show that IQ(λ) consistently outperforms traditional Q-learning, Q(λ), and Sarsa in terms of solution quality, convergence speed, and robustness. Furthermore, ablation studies and sensitivity analysis confirm the importance of the algorithm’s core design components. This work provides a scalable and extensible framework for intelligent scheduling in cyber-physical manufacturing systems and lays a foundation for future integration with secure, IoT-connected environments. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

23 pages, 2162 KB  
Article
A Secure Telemetry Transmission Architecture Independent of GSM: An Experimental LoRa-Based System on Raspberry Pi for IIoT Monitoring Tasks
by Ultuar Zhalmagambetova, Alexandr Neftissov, Andrii Biloshchytskyi, Ilyas Kazambayev, Alexey Shimpf, Madi Kazhibekov and Dmitriy Snopkov
Appl. Sci. 2025, 15(17), 9539; https://doi.org/10.3390/app15179539 (registering DOI) - 30 Aug 2025
Viewed by 209
Abstract
The growing demand for autonomous and energy-efficient telemetry systems in Industrial Internet of Things (IIoT) applications highlights the limitations of GSM-dependent infrastructure. This research proposes and validates a secure and infrastructure-independent telemetry transmission architecture based on Raspberry Pi and LoRa technology. The system [...] Read more.
The growing demand for autonomous and energy-efficient telemetry systems in Industrial Internet of Things (IIoT) applications highlights the limitations of GSM-dependent infrastructure. This research proposes and validates a secure and infrastructure-independent telemetry transmission architecture based on Raspberry Pi and LoRa technology. The system integrates lightweight symmetric encryption (AES-128 with CRC-8) and local data processing, enabling long-range communication without reliance on cellular networks or cloud platforms. A fully functional prototype was developed and tested in real urban environments with high electromagnetic interference. The experimental evaluation was conducted over distances ranging from 10 to 1100 m, focusing on the Packet Delivery Ratio (PDR), Packet Error Rate (PER), and Packet Loss Rate (PLR). Results demonstrate reliable communication up to 200 m and high long-term stability, with a 24 h continuous transmission test achieving a PDR of 97.5%. These findings confirm the suitability of the proposed architecture for secure, autonomous IIoT deployments in infrastructure-limited and noisy environments. Full article
Show Figures

Figure 1

27 pages, 2187 KB  
Review
Review of Fuzzy Methods Application in IIoT Security—Challenges and Perspectives
by Emanuel Krzysztoń, Dariusz Mikołajewski and Piotr Prokopowicz
Electronics 2025, 14(17), 3475; https://doi.org/10.3390/electronics14173475 - 29 Aug 2025
Viewed by 82
Abstract
Traditional methods often fail when confronted with data characterised by uncertainty, incompleteness, and dynamically evolving threats within the Industrial Internet of Things (IIoT) environment. This paper presents the role of fuzzy set methods as a response to these challenges in ensuring IIoT security. [...] Read more.
Traditional methods often fail when confronted with data characterised by uncertainty, incompleteness, and dynamically evolving threats within the Industrial Internet of Things (IIoT) environment. This paper presents the role of fuzzy set methods as a response to these challenges in ensuring IIoT security. A systematic literature review reveals how fuzzy set methods contribute to supporting and enabling actions ranging from anomaly detection to risk analysis. The work focuses on fuzzy systems such as the Fuzzy Inference System (FIS) and the Adaptive Neuro-Fuzzy Inference System (ANFIS), highlighting their strengths, including their resilience to imperfect data and the intuitiveness of their rules. It also identifies challenges related to optimisation and scalability. The article outlines directions for further research, indicating the potential of fuzzy methods as a cornerstone of future, intelligent IIoT cyber defence systems, capable of effectively responding to complex and changing attack scenarios. Full article
Show Figures

Figure 1

34 pages, 2219 KB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 - 24 Aug 2025
Viewed by 580
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 3196 KB  
Article
Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids
by Haiyong Zeng, Yuanyan Huang, Kaijie Zhan, Zichao Yu, Hongyan Zhu and Fangyan Li
Sensors 2025, 25(17), 5226; https://doi.org/10.3390/s25175226 - 22 Aug 2025
Viewed by 516
Abstract
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in [...] Read more.
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. Full article
(This article belongs to the Special Issue Smart Sensors, Smart Grid and Energy Management)
Show Figures

Figure 1

23 pages, 1115 KB  
Article
Temporal-Aware Chain-of-Thought Reasoning for Vibration-Based Pump Fault Diagnosis
by Jinchao Zeng, Zicheng Li, Zuopeng Zheng and Qizhe Lin
Processes 2025, 13(8), 2624; https://doi.org/10.3390/pr13082624 - 19 Aug 2025
Viewed by 449
Abstract
Industrial pump systems require real-time fault diagnosis for predictive maintenance, but conventional Chain-of-Thought (COT) reasoning faces computational bottlenecks when processing high-frequency vibration data. This paper proposes Vibration-Aware COT (VA-COT), a novel framework that integrates multi-domain feature fusion (time, frequency, time–frequency) with adaptive reasoning [...] Read more.
Industrial pump systems require real-time fault diagnosis for predictive maintenance, but conventional Chain-of-Thought (COT) reasoning faces computational bottlenecks when processing high-frequency vibration data. This paper proposes Vibration-Aware COT (VA-COT), a novel framework that integrates multi-domain feature fusion (time, frequency, time–frequency) with adaptive reasoning depth control. Key innovations involve expert prior-guided dynamic feature selection to optimize edge-device inputs, complexity-aware reasoning chains reducing computational steps by 40–65% through confidence-based early termination, and lightweight deployment on industrial ARM-based single-board computers (SBCs). Evaluated on a 12-class pump fault dataset (5400 samples from centrifugal/gear pumps), VA-COT achieves 93.2% accuracy surpassing standard COT (89.3%) and CNN–LSTM (Convolutional Neural Network-Long Short-Term Memory network) (91.2%), while cutting latency to <1.1 s and memory usage by 65%. Six-month validation at pump manufacturing facilities demonstrated 35% maintenance cost reduction and 98% faster diagnostics versus manual methods, proving its viability for IIoT (Industrial Internet of Things) deployment. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

26 pages, 3628 KB  
Article
DUA-MQTT: A Distributed High-Availability Message Communication Model for the Industrial Internet of Things
by Anying Chai, Wanda Yin, Mengjia Lian, Yunpeng Sun, Chenyang Guo, Lei Wang and Zhaobo Fang
Sensors 2025, 25(16), 5071; https://doi.org/10.3390/s25165071 - 15 Aug 2025
Viewed by 412
Abstract
With the rapid development of the Industrial Internet of Things (IIoT), the scale of industrial equipment has expanded, leading to an increasing diversity of communication protocols and a significant rise in data transmission volume within industrial networks. Traditional communication systems, constrained by concurrency [...] Read more.
With the rapid development of the Industrial Internet of Things (IIoT), the scale of industrial equipment has expanded, leading to an increasing diversity of communication protocols and a significant rise in data transmission volume within industrial networks. Traditional communication systems, constrained by concurrency and throughput limitations, struggle to meet the demands of massive data transmission. To address this issue, this paper proposes a distributed high-availability message communication model for IIoT (DUA-MQTT) based on the OPC UA architecture. It integrates the distributed MQTT protocol to enhance concurrency and throughput performance. Additionally, to improve the information processing capability of the proposed model, this paper designs an information-modeling model based on industrial unstructured text data (MAC-GC), which generates structured data nodes that comply with the OPC UA information model specification through hierarchical annotation, accurately mapping device functions and attributes. Experimental results show that, compared with traditional communication models, the DUA-MQTT model reduces end-to-end latency by 28.6% and increases throughput by 22.2%, effectively enhancing the concurrency of data transmission. In terms of information-modeling capabilities, MAC-GC outperforms other models in accuracy (0.9701), recall (0.9601), and F1 score (0.9651), effectively improving the utilization efficiency and modeling accuracy of unstructured data. Full article
Show Figures

Figure 1

23 pages, 4594 KB  
Article
Minimization of Resource Consumption with URLLC Constraints for Relay-Assisted IIoT
by Yujie Zhao, Tao Peng, Yichen Guo, Yijing Niu and Wenbo Wang
Sensors 2025, 25(15), 4846; https://doi.org/10.3390/s25154846 - 6 Aug 2025
Viewed by 280
Abstract
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource [...] Read more.
In relay-assisted Industrial Internet of Things (IIoT) systems with ultra-reliable low-latency communication (uRLLC) requirements, finite blocklength coding imposes stringent resource constraints. In this work, the packet error probability (PEP) and blocklength allocation across two-hop links are jointly optimized to minimize total blocklength (resource consumption) while satisfying reliability, latency, and throughput requirements. The original multi-variable problem is decomposed into two tractable subproblems. In the first subproblem, for a fixed total blocklength, the achievable rate is maximized. A near-optimal PEP is first derived via theoretical analysis. Subsequently, theoretical analysis proves that blocklength must be optimized to equalize the achievable rates between the two hops to maximize system performance. Consequently, the closed-form solution to optimal blocklength allocation is derived. In the second subproblem, the total blocklength is minimized via a bisection search method. Simulation results show that by adopting near-optimal PEPs, our approach reduces computation time by two orders of magnitude while limiting the achievable rate loss to within 1% compared to the exhaustive search method. At peak rates, the hop with superior channel conditions requires fewer resources. Compared with three baseline algorithms, the proposed algorithm achieves average resource savings of 21.40%, 14.03%, and 17.18%, respectively. Full article
Show Figures

Figure 1

18 pages, 8520 KB  
Article
Cross-Layer Controller Tasking Scheme Using Deep Graph Learning for Edge-Controlled Industrial Internet of Things (IIoT)
by Abdullah Mohammed Alharthi, Fahad S. Altuwaijri, Mohammed Alsaadi, Mourad Elloumi and Ali A. M. Al-Kubati
Future Internet 2025, 17(8), 344; https://doi.org/10.3390/fi17080344 - 30 Jul 2025
Viewed by 252
Abstract
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking [...] Read more.
Edge computing (EC) plays a critical role in advancing the next-generation Industrial Internet of Things (IIoT) by enhancing production, maintenance, and operational outcomes across heterogeneous network boundaries. This study builds upon EC intelligence and integrates graph-based learning to propose a Cross-Layer Controller Tasking Scheme (CLCTS). The scheme operates through two primary phases: task grouping assignment and cross-layer control. In the first phase, controller nodes executing similar tasks are grouped based on task timing to achieve monotonic and synchronized completions. The second phase governs controller re-tasking both within and across these groups. Graph structures connect the groups to facilitate concurrent tasking and completion. A learning model is trained on inverse outcomes from the first phase to mitigate task acceptance errors (TAEs), while the second phase focuses on task migration learning to reduce task prolongation. Edge nodes interlink the groups and synchronize tasking, migration, and re-tasking operations across IIoT layers within unified completion periods. Departing from simulation-based approaches, this study presents a fully implemented framework that combines learning-driven scheduling with coordinated cross-layer control. The proposed CLCTS achieves an 8.67% reduction in overhead, a 7.36% decrease in task processing time, and a 17.41% reduction in TAEs while enhancing the completion ratio by 13.19% under maximum edge node deployment. Full article
Show Figures

Figure 1

20 pages, 1449 KB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 756
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

27 pages, 1601 KB  
Article
A Lightweight Authentication Method for Industrial Internet of Things Based on Blockchain and Chebyshev Chaotic Maps
by Zhonghao Zhai, Junyi Liu, Xinying Liu, Yanqin Mao, Xinjun Zhang, Jialin Ma and Chunhua Jin
Future Internet 2025, 17(8), 338; https://doi.org/10.3390/fi17080338 - 28 Jul 2025
Viewed by 289
Abstract
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, [...] Read more.
The Industrial Internet of Things (IIoT), a key enabler of Industry 4.0, integrates advanced communication technologies with the industrial economy to enable intelligent manufacturing and interconnected systems. Secure and reliable identity authentication in the IIoT becomes essential as connectivity expands across devices, systems, and domains. Blockchain technology presents a promising solution due to its decentralized, tamper-resistant, and traceable characteristics, facilitating secure and transparent identity verification. However, current blockchain-based cross-domain authentication schemes often lack a lightweight design, rendering them unsuitable for latency-sensitive and resource-constrained industrial environments. This paper proposes a lightweight cross-domain authentication scheme that combines blockchain with Chebyshev chaotic mapping. Unlike existing schemes relying heavily on Elliptic Curve Cryptography or bilinear pairing, our design circumvents such computationally intensive primitives entirely through the algebraic structure of Chebyshev polynomials. A formal security analysis using the Real-Or-Random (ROR) model demonstrates the scheme’s robustness. Furthermore, performance evaluations conducted with Hyperledger Fabric and the MIRACL cryptographic library validate the method’s effectiveness and superiority over existing approaches in terms of both security and operational efficiency. Full article
Show Figures

Figure 1

24 pages, 2815 KB  
Article
Blockchain-Powered LSTM-Attention Hybrid Model for Device Situation Awareness and On-Chain Anomaly Detection
by Qiang Zhang, Caiqing Yue, Xingzhe Dong, Guoyu Du and Dongyu Wang
Sensors 2025, 25(15), 4663; https://doi.org/10.3390/s25154663 - 28 Jul 2025
Viewed by 438
Abstract
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential [...] Read more.
With the increasing scale of industrial devices and the growing complexity of multi-source heterogeneous sensor data, traditional methods struggle to address challenges in fault detection, data security, and trustworthiness. Ensuring tamper-proof data storage and improving prediction accuracy for imbalanced anomaly detection for potential deployment in the Industrial Internet of Things (IIoT) remain critical issues. This study proposes a blockchain-powered Long Short-Term Memory Network (LSTM)–Attention hybrid model: an LSTM-based Encoder–Attention–Decoder (LEAD) for industrial device anomaly detection. The model utilizes an encoder–attention–decoder architecture for processing multivariate time series data generated by industrial sensors and smart contracts for automated on-chain data verification and tampering alerts. Experiments on real-world datasets demonstrate that the LEAD achieves an F0.1 score of 0.96, outperforming baseline models (Recurrent Neural Network (RNN): 0.90; LSTM: 0.94; and Bi-directional LSTM (Bi-LSTM, 0.94)). We simulate the system using a private FISCO-BCOS network with a multi-node setup to demonstrate contract execution, anomaly data upload, and tamper alert triggering. The blockchain system successfully detects unauthorized access and data tampering, offering a scalable solution for device monitoring. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

10 pages, 460 KB  
Article
Industry 5.0 and Digital Twins in the Chemical Industry: An Approach to the Golden Batch Concept
by Andrés Redchuk and Federico Walas Mateo
ChemEngineering 2025, 9(4), 78; https://doi.org/10.3390/chemengineering9040078 - 25 Jul 2025
Viewed by 792
Abstract
In the context of industrial digitalization, the Industry 5.0 paradigm introduces digital twins as a cutting-edge solution. This study explores the concept of digital twins and their integration with the Industrial Internet of Things (IIoT), offering insights into how these technologies bring intelligence [...] Read more.
In the context of industrial digitalization, the Industry 5.0 paradigm introduces digital twins as a cutting-edge solution. This study explores the concept of digital twins and their integration with the Industrial Internet of Things (IIoT), offering insights into how these technologies bring intelligence to industrial settings to drive both process optimization and sustainability. Industrial digitalization connects products and processes, boosting the productivity and efficiency of people, facilities, and equipment. These advancements are expected to yield broad economic and environmental benefits. As connected systems continuously generate data, this information becomes a vital asset, but also introduces new challenges for industrial operations. The work presented in this article aims to demonstrate the possibility of generating advanced tools for process optimization. This, which ultimately impacts the environment and empowers people in the processes, is achieved through data integration and the development of a digital twin using open tools such as NodeRed v4.0.9 and Python 3.13.5 frameworks, among others. The article begins with a conceptual analysis of IIoT and digital twin integration and then presents a case study to demonstrate how these technologies support the principles of the Industry 5.0 framework. Specifically, it examines the requirements for applying the golden batch concept within a biological production environment. The goal is to illustrate how digital twins can facilitate the achievement of quality standards while fostering a more sustainable production process. The results from the case study show that biomaterial concentration was optimized by approximately 10%, reducing excess in an initially overdesigned process. In doing so, this paper highlights the potential of digital twins as key enablers of Industry 5.0—enhancing sustainability, empowering operators, and building resilience throughout the value chain. Full article
Show Figures

Figure 1

10 pages, 637 KB  
Proceeding Paper
Improving Industrial Control System Cybersecurity with Time-Series Prediction Models
by Velizar Varbanov and Tatiana Atanasova
Eng. Proc. 2025, 101(1), 4; https://doi.org/10.3390/engproc2025101004 - 22 Jul 2025
Viewed by 427
Abstract
Traditional security detection methods struggle to identify zero-day attacks in Industrial Control Systems (ICSs), particularly within critical infrastructures (CIs) integrated with the Industrial Internet of Things (IIoT). These attacks exploit unknown vulnerabilities, leveraging the complexity of physical and digital system interconnections, making them [...] Read more.
Traditional security detection methods struggle to identify zero-day attacks in Industrial Control Systems (ICSs), particularly within critical infrastructures (CIs) integrated with the Industrial Internet of Things (IIoT). These attacks exploit unknown vulnerabilities, leveraging the complexity of physical and digital system interconnections, making them difficult to detect. The integration of legacy ICS networks with modern computing and networking technologies has expanded the attack surface, increasing susceptibility to cyber threats. Anomaly detection systems play a crucial role in safeguarding these infrastructures by identifying deviations from normal operations. This study investigates the effectiveness of deep learning-based anomaly detection models in revealing operational anomalies that could indicate potential cyber-attacks. We implemented and evaluated a hybrid deep learning architecture combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to analyze ICS telemetry data. The CNN-LSTM model excels in identifying time-dependent anomalies and enables near real-time detection of cyber-attacks, significantly improving security monitoring capabilities for IIoT-integrated critical infrastructures. Full article
Show Figures

Figure 1

20 pages, 1851 KB  
Article
ISO-Based Framework Optimizing Industrial Internet of Things for Sustainable Supply Chain Management
by Emad Hashiem Abualsauod
Sustainability 2025, 17(14), 6421; https://doi.org/10.3390/su17146421 - 14 Jul 2025
Viewed by 591
Abstract
The Industrial Internet of Things (IIoT) offers transformative potential for supply chain management by enabling automation, real-time monitoring, and predictive analytics. However, fragmented standardization, interoperability challenges, and cybersecurity risks hinder its sustainable adoption. This study aims to develop and validate an ISO-based framework [...] Read more.
The Industrial Internet of Things (IIoT) offers transformative potential for supply chain management by enabling automation, real-time monitoring, and predictive analytics. However, fragmented standardization, interoperability challenges, and cybersecurity risks hinder its sustainable adoption. This study aims to develop and validate an ISO-based framework to optimize IIoT networks for sustainable supply chain operations. A quantitative time-series research design was employed, analyzing 150 observations from 10–15 industrial firms over five years. Analytical methods included ARIMA, structural equation modeling (SEM), and XGBoost for predictive evaluation. The findings indicate a 6.2% increase in system uptime, a 4.7% reduction in operational costs, a 2.8% decrease in lead times, and a 55–60% decline in security incidents following ISO standard implementation. Interoperability improved by 40–50%, and integration cost savings ranged from 35–40%, contributing to a 25% boost in overall operational efficiency. These results underscore the critical role of ISO frameworks such as ISO/IEC 30141 and ISO 50001 in enhancing connectivity, energy efficiency, and network security across IIoT-enabled supply chains. While standardization significantly improves key performance indicators, the persistence of lead time variability suggests the need for additional optimization strategies. This study offers a structured and scalable methodology for ISO-based IIoT integration, delivering both theoretical advancement and practical relevance. By aligning with internationally recognized sustainability standards, it provides policymakers, practitioners, and industry leaders with an evidence-based framework to accelerate digital transformation, enhance operational efficiency, and support resilient, sustainable supply chain development in the context of Industry 4.0. Full article
(This article belongs to the Special Issue Network Operations and Supply Chain Management)
Show Figures

Figure 1

Back to TopTop