Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,301)

Search Parameters:
Keywords = Interleukin-10

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6046 KB  
Article
Oral Treatment with the Vimentin-Targeting Compound ALD-R491 Mitigates Hyperinflammation, Multi-Organ Injury, and Mortality in CLP-Induced Septic Mice
by Jianping Wu, Shuaishuai Wang, Kuai Yu, Zijing Xu, Xueting Wu, Deebie Symmes, Lian Mo, Chun Cheng, Ruihuan Chen and Junfeng Zhang
Life 2025, 15(10), 1563; https://doi.org/10.3390/life15101563 - 6 Oct 2025
Abstract
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as [...] Read more.
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as a network hub that senses and integrates cellular signals. Its involvement in key sepsis pathologies, including infection, hyperinflammation, immunosuppression, coagulopathy and metabolic dysregulation, positions it as a potential therapeutic target. This study evaluated the efficacy of ALD-R491, a novel small-molecule vimentin modulator, in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice received ALD-R491 prophylactically or therapeutically, alone or with ceftriaxone. The treatment significantly reduced serum levels of key biomarkers of sepsis, including C-reactive protein (CRP), lactate (Lac), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and dose-dependently improved the survival of septic mice. Organ-specific analysis confirmed the effects of ALD-R491 in mitigating hyperinflammation and multi-organ injury. The treatment reduced pulmonary edema and inflammation; preserved liver tissue architecture and improved hepatic function with lowered alanine aminotransferase/aspartate aminotransferase (ALT/AST); decreased kidney tubular damage; and improved renal function with lowered creatinine/blood urea nitrogen (BUN). These preclinical findings indicate that the vimentin-targeting agent ALD-R491 represents a promising therapeutic candidate for sepsis and merits further clinical investigation. Full article
Show Figures

Figure 1

20 pages, 663 KB  
Review
Glucocorticoid-Mediated Modulation of Eosinopoiesis in Asthma: A Paradoxical Duality
by Bruno Marques Vieira
Allergies 2025, 5(4), 35; https://doi.org/10.3390/allergies5040035 (registering DOI) - 6 Oct 2025
Abstract
Glucocorticoids (GCs) remain the cornerstone of asthma treatment due to their potent anti-inflammatory and eosinophil-suppressive effects in the airways, including the induction of peripheral eosinophil apoptosis and downregulation of type 2 cytokine signaling. However, emerging evidence reveals a paradoxical role for GCs in [...] Read more.
Glucocorticoids (GCs) remain the cornerstone of asthma treatment due to their potent anti-inflammatory and eosinophil-suppressive effects in the airways, including the induction of peripheral eosinophil apoptosis and downregulation of type 2 cytokine signaling. However, emerging evidence reveals a paradoxical role for GCs in the bone marrow, where they enhance eosinophil production (eosinopoiesis), especially under allergic, infectious, or surgical stress conditions. This duality reflects a complex immunoendocrine interplay involving GC-induced modulation of eosinophil progenitor survival, proliferation, and responsiveness to eosinopoietic cytokines such as interleukin-5 and granulocyte-macrophage colony-stimulating factor. Furthermore, GCs synergize with lipid mediators like cysteinyl-leukotrienes and prostaglandins, modulating both transcriptional and adhesion molecule profiles that prime eosinophil precursors for migration and differentiation. This review examines the molecular and cellular mechanisms underlying GC-induced eosinopoiesis, its functional link to airway inflammation, and its clinical implications for asthma management. We also explore potential therapeutic strategies aimed at selectively modulating bone marrow eosinophil output without compromising the peripheral anti-inflammatory benefits of GCs. Understanding this paradoxical duality holds significant translational potential for improving disease control and preventing asthma exacerbations. Full article
(This article belongs to the Section Asthma/Respiratory)
Show Figures

Figure 1

17 pages, 1929 KB  
Systematic Review
The Anti-Inflammatory Effects of Resistance Training in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis
by Nikolaos P. E. Kadoglou, Chrysostomos Georgiou, Nikolaos Balaskas, Chrystalla Panayiotou, Michail Vardas, Andreas Mitsis and Constantine N. Antonopoulos
Biomolecules 2025, 15(10), 1417; https://doi.org/10.3390/biom15101417 - 5 Oct 2025
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased cardiovascular risk characterized by low-grade inflammation. The aim of this systematic review and meta-analysis was to assess the effects of resistance exercise training (RET) predominantly on cytokines, along with changes in glucose profile and [...] Read more.
Type 2 diabetes mellitus (T2DM) is associated with increased cardiovascular risk characterized by low-grade inflammation. The aim of this systematic review and meta-analysis was to assess the effects of resistance exercise training (RET) predominantly on cytokines, along with changes in glucose profile and body composition in T2DM patients. The present systematic review and meta-analysis was conducted utilizing PubMed, Web of Science, Embase, and the Cochrane Library databases from their inception up to July 2024 (PROSPERO; registration number CRD420251149352). We screened only for randomized controlled trials investigating the effects of systematic, supervised RET on C-reactive protein (CRP) and adipokines: adiponectin, interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), along with changes in anthropometric indices and glycemic control in adult T2DM patients. Pooled post-exercise weighted mean differences (WMDs) with 95% confidence intervals (CIs) were calculated for all outcomes of interest between exercise-treated patients and controls. Sixteen studies involving a total of 668 T2DM patients were retrieved from the databases for meta-analysis. We used the GRADE framework for assessing the certainty of evidence. Cochran Q-score (I2) was used to estimate heterogeneity among studies (level of significance p < 0.10) and risk of bias analysis was also performed. The cumulative results showed that post-RET inflammatory markers were lower in exercise-treated patients compared to controls regarding CRP (mg/L) (WMD: −0.63; 95%CIs: −1.05, −0.20; p < 0.001); adiponectin (μg/mL) (WMD: −0.94; 95%CIs: −1.49, −0.38; p < 0.001). The results from adiponectin are quite conflicting since they derived from only three studies, where one of them had the greater impact. In parallel, we noticed significant amelioration of fasting glucose and HbA1c (p < 0.001), while body weight remained unaltered. Our meta-analysis demonstrated non-significantly lower levels of IL-6 and TNF-α in RET vs. control group. RET can merely reduce the inflammatory burden in T2DM patients by ameliorating the circulating levels of CRP and adiponectin, while in the rest of the biomarkers, non-significant results were obtained. Hence, the overall clinical impact of those anti-inflammatory effects of RET needs to be determined. Full article
(This article belongs to the Special Issue Inflammation—The Surprising Bridge between Diseases)
14 pages, 1039 KB  
Article
Edible Herb Aster glehni Alleviates Inflammation and Oxidative Stress in Chondrocytes by Regulating p38 and NF-κB Signaling Pathways with Partial Involvement of Its Major Component, 3,5-Dicaffeoylqunic Acid
by Jihyeon Baek, Hanhee Choi, Sung Ran Yoon, Yong Jin Jeong, Shin Young Oh, Min-sook Kang, Haeng-ran Kim, Han-Seung Shin and Seok-Seong Kang
Int. J. Mol. Sci. 2025, 26(19), 9691; https://doi.org/10.3390/ijms26199691 (registering DOI) - 4 Oct 2025
Abstract
Osteoarthritis (OA) is primarily a degenerative disease triggered by joint inflammation and oxidative stress. While Aster glehni is an edible and traditionally medicinal herb, the beneficial effect of A. glehni on OA progression remains unknown. This study aimed to investigate the effect of [...] Read more.
Osteoarthritis (OA) is primarily a degenerative disease triggered by joint inflammation and oxidative stress. While Aster glehni is an edible and traditionally medicinal herb, the beneficial effect of A. glehni on OA progression remains unknown. This study aimed to investigate the effect of A. glehni extract (AGE) and its primary biological compound—3,5-dicaffeoylquinic acid (3,5-DCQA)—on inflammation and oxidative stress in chondrocytes. AGE effectively inhibited the expression of interleukin (IL)-6, cyclooxygenase (COX)-2, matrix metalloproteinase (MMP)-1, and MMP-13 in chondrocytes stimulated by IL-1β for 24 h. In contrast, 3,5-DCQA did not inhibit IL-6, COX-2, and MMP expressions under the same conditions. However, when chondrocytes were stimulated by IL-1β for a short duration (6 h), 3,5-DCQA suppressed IL-6, COX-2, and MMP expressions. The inhibition of IL-6, COX-2, and MMP expressions by AGE was associated with the p38 kinase and nuclear factor-κB signaling pathways, but not ERK and JNK signaling pathways. Furthermore, AGE prevented cell apoptosis and reduced intracellular reactive oxygen species levels in chondrocytes induced by hydrogen peroxide (H2 O2). AGE restored the decreased superoxide dismutase 1 and catalase mRNA expressions caused by H2 O2. Collectively, AGE may protect against cartilage deterioration by inhibiting inflammation and oxidative stress, making it a promising therapeutic agent for alleviating OA. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
20 pages, 4443 KB  
Article
Preventing Sepsis in Preterm Infants with Bovine Lactoferrin: A Randomized Trial Exploring Immune and Antioxidant Effects
by Virginia Plaza-Astasio, Belén Pastor-Villaescusa, Mª Cruz Rico-Prados, María Dolores Mesa-García, María José Párraga-Quiles, María Dolores Ruiz-González, Pilar Jaraba-Caballero, Inés Tofé-Valera, María José de la Torre-Aguilar and María Dolores Ordóñez-Díaz
Nutrients 2025, 17(19), 3154; https://doi.org/10.3390/nu17193154 - 3 Oct 2025
Abstract
Background/Objectives: Late-onset neonatal sepsis (LOS) remains a leading cause of morbidity and mortality in very low birth weight (VLBW) infants (<1500 g and/or gestational age <32 weeks), with limited preventive strategies. We evaluated whether early enteral bovine lactoferrin (bLf), given its antimicrobial, [...] Read more.
Background/Objectives: Late-onset neonatal sepsis (LOS) remains a leading cause of morbidity and mortality in very low birth weight (VLBW) infants (<1500 g and/or gestational age <32 weeks), with limited preventive strategies. We evaluated whether early enteral bovine lactoferrin (bLf), given its antimicrobial, immunomodulatory, and antioxidant properties, reduces LOS and improves immunologic, antioxidant, and hematologic markers in these infants. Methods: In this randomized, double-blind, placebo-controlled trial, 103 VLBW infants received bLf (150 mg/kg/day; n = 50) or the placebo (n = 53) within 72 h of birth for four weeks or until discharge. Outcomes included culture-confirmed LOS, mortality, and major morbidities. Risk ratios (RRs) were calculated, adjusting for gestational age, human milk intake, and ventilatory support when ≥25 events occurred. Pre/post changes in cytokines, total antioxidant capacity (TAC), and hemoglobin (Hb) were analyzed for interaction effects (time x intervention). Results: bLf reduced LOS (adjusted RR 0.54; 95% CI 0.31–0.93; p = 0.028), without differences in other morbidities or mortality. bLf preserved MCP-1 levels, declining in the placebo group (interaction p = 0.022). Among LOS infants receiving bLf, IL-6 remained stable and MCP-1 increased, while both declined in other groups (interaction p = 0.007 for IL-6; p = 0.052 for MCP-1). Although TAC showed a non-significant interaction, the placebo group declined (p = 0.002), while bLf remained stable (p = 0.400) in the post hoc analysis. In non-transfused infants, bLf increased Hb by 0.9 g/dL vs. controls (p = 0.028). Conclusions: Early bLf supplementation safely reduces LOS in VLBW infants and may support immunologic, antioxidant, and hematologic stability. Full article
(This article belongs to the Section Pediatric Nutrition)
15 pages, 7963 KB  
Article
Legionella pneumophila-Induced NETs Do Not Bear LL-37 Peptides
by Valeria Iliadi, Stefania Marti, Aikaterini Skeva, Konstantinos Marmanis, Theofani Tsavdaridou, Georgios Euthymiou, Eleni Tryfonopoulou, Dimitrios Themelidis, Athina Xanthopoulou, Katerina Chlichlia, Maria Koffa, Theocharis Konstantinidis and Maria Panopoulou
Microorganisms 2025, 13(10), 2298; https://doi.org/10.3390/microorganisms13102298 - 3 Oct 2025
Abstract
Legionella pneumophila (L. pneumophila) infection is characterized by a wide spectrum of manifestations, from influenza-like illness to life-threatening atypical pneumonia with multiorgan failure. The aim of our study was the assessment of in vitro and ex vivo neutrophil activation in L. [...] Read more.
Legionella pneumophila (L. pneumophila) infection is characterized by a wide spectrum of manifestations, from influenza-like illness to life-threatening atypical pneumonia with multiorgan failure. The aim of our study was the assessment of in vitro and ex vivo neutrophil activation in L. pneumophila infections, as well as the role of neutrophils’ peptides such as LL-37 in infection. The ability of neutrophils to form ex vivo extracellular traps (NETs) in response to bacterial infection was examined by immunofluorescence. In parallel, patients’ sera, as well as opsonized standard L. pneumophila strains, were used for in vitro activation of neutrophils from healthy individuals. The serum levels of interleukins were assessed using the LEGENDplexTM Multi-Analyte Flow Assay Kit. Furthermore, citrullinated cf-DNA as a marker of neutrophil extracellular traps (NETs) was detected in the serum of patients with acute infection. It was demonstrated that neutrophils released NETs in vitro and ex vivo upon L. pneumophila (interaction in an autophagy-independent manner. Notably, IL-1b was detected on NETs, but an antimicrobial peptide LL-37 was absent. The lack of antimicrobial activity failed to inhibit bacterial proliferation. In addition, in vitro and ex vivo NETs formation was observed during the Clarithromycin treatment. Those NETs were decorated with bioactive antimicrobial peptide LL-37, which inhibits bacterial proliferation. The findings provide evidence that neutrophils release NETs in vitro and ex vivo by expressing the IL1β protein in them. The lack of expression of the antimicrobial peptide LL-37 on the NETs demonstrates the inability of the cells to inhibit proliferation, and consequently the elimination of L. pneumophila. Clarithromycin plays a dual role in the elimination. Full article
(This article belongs to the Special Issue Research on Antimicrobial Resistance and New Therapeutic Approaches)
Show Figures

Figure 1

21 pages, 4018 KB  
Article
Bifidobacterium longum P77 and Lactiplantibacillus plantarum P72 and Their Mix—Live or Heat-Treated—Mitigate Sleeplessness and Depression in Mice: Involvement of Serotonergic and GABAergic Systems
by Ji-Su Baek, Xiaoyang Ma, Hee-Seo Park, Dong-Yun Lee and Dong-Hyun Kim
Cells 2025, 14(19), 1547; https://doi.org/10.3390/cells14191547 - 3 Oct 2025
Abstract
Sleeplessness (insomnia) is a significant symptom associated with stress-induced depression/anxiety. In the present study, we selected Bifidobacterium longum P77, which increased serotonin production in corticosterone-stimulated SH-SY5Y cells, from the fecal bacteria collection of healthy volunteers and examined the effects of B. longum on [...] Read more.
Sleeplessness (insomnia) is a significant symptom associated with stress-induced depression/anxiety. In the present study, we selected Bifidobacterium longum P77, which increased serotonin production in corticosterone-stimulated SH-SY5Y cells, from the fecal bacteria collection of healthy volunteers and examined the effects of B. longum on depression, anxiety, and sleeplessness induced by immobilization stress or by transplantation of cultured fecal microbiota (cFM) from patients with depression. Orally administered B. longum P77 decreased depression/anxiety- and sleeplessness-like behaviors in immobilization stress-exposed mice. B. longum P77 reduced immobilization stress-induced corticosterone, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 expression and the cell population of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)+ in the prefrontal cortex, while the expression levels of immobilization stress-suppressed IL-10, γ-aminobutyric acid (GABA), its receptor GABAARα1, serotonin, and its receptor 5-HT1AR increased. B. longum P77 also alleviated immobilization stress-induced colitis: it decreased TNF-α and IL-6 expression and increased IL-10 expression in the colon. Furthermore, B. longum P77, Lactiplantibacillus plantarum P72, and their combination decreased cFM- or immobilization stress-induced depression-, anxiety-, and sleeplessness-like behaviors. They also decreased cFM-induced, corticosterone, TNF-α, and IL-6 expression levels in the prefrontal cortex and colon, while increasing cFM- or immobilization stress-suppressed GABA, GABAARα1, serotonin, and 5-HT1AR expression levels in the prefrontal cortex. In particular, the combination of B. longum P77 and L. plantarum P72 (P7277) additively or synergistically alleviated depression-, anxiety-, and sleeplessness-like behaviors, along with their associated biomarkers. Heat-killed P7277 also alleviated immobilization stress-induced depression/anxiety- and sleeplessness-like symptoms. These results imply that L. plantarum P72 and/or B. longum P77 can mitigate depression/anxiety and sleeplessness by upregulating GABAergic and serotonergic systems, along with the suppression of NF-κB activation. Full article
Show Figures

Figure 1

11 pages, 2172 KB  
Communication
Integrated Meta-Analysis of Scalp Transcriptomics and Serum Proteomics Defines Alopecia Areata Subtypes and Core Disease Pathways
by Li Xi, Elena Peeva, Yuji Yamaguchi, Zhan Ye, Craig L. Hyde and Emma Guttman-Yassky
Int. J. Mol. Sci. 2025, 26(19), 9662; https://doi.org/10.3390/ijms26199662 - 3 Oct 2025
Abstract
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated [...] Read more.
Alopecia areata (AA) is a chronic autoimmune disorder characterized by non-scarring hair loss, with subtypes ranging from patchy alopecia (AAP) to alopecia totalis and universalis (AT/AU). The aim of this research is to investigate molecular features across AA severity by performing an integrated analysis of scalp transcriptomic datasets (GSE148346, GSE68801, GSE45512, GSE111061) and matched serum proteomic data from GSE148346. Differential expression analysis indicated that, relative to normal scalp, non-lesional AA tissue shows early immune activation—including Type 1 (C-X-C motif chemokine ligand 9 (CXCL9), CXCL10, CD8a molecule (CD8A), C-C motif chemokine ligand 5 (CCL5)) and Type 2 (CCL13, CCL18) signatures—together with reduced expression of hair-follicle structural genes (keratin 32(KRT32)–35, homeobox C13 (HOXC13)) (FDR < 0.05, |fold change| > 1.5). Lesional AAP and AT/AU scalp showed stronger pro-inflammatory upregulation and greater loss of keratins and keratin-associated proteins (KRT81, KRT83, desmoglein 4 (DSG4), KRTAP12/15) compared with non-lesional scalp (FDR < 0.05, |fold change| > 1.5). Ferroptosis-associated genes (cAMP responsive element binding protein 5 (CREB5), solute carrier family 40 member 1 (SLC40A1), (lipocalin 2) LCN2, SLC7A11) and IRS (inner root sheath) differentiation genes (KRT25, KRT27, KRT28, KRT71–KRT75, KRT81, KRT83, KRT85–86, trichohyalin (TCHH)) were consistently repressed across subtypes, with the strongest reductions in AT/AU lesions versus AAP lesions, suggesting that oxidative-stress pathways and follicular structural integrity may contribute to subtype-specific pathology. Pathway analysis of lesional versus non-lesional scalp highlighted enrichment of IFN-α/γ, cytotoxic, and IL-15 signaling. Serum proteomic profiling, contrasting AA vs. healthy controls, corroborated scalp findings, revealing parallel alterations in immune-related proteins (CXCL9–CXCL10, CD163, interleukin-16 (IL16)) and structural markers (angiopoietin 1 (ANGPT1), decorin (DCN), chitinase-3-like protein 1 (CHI3L1)) across AA subtypes. Together, these data offer an integrated view of immune, oxidative, and structural changes in AA and found ferroptosis-related and IRS genes, along with immune signatures, as potential molecular indicators to support future studies on disease subtypes and therapeutic strategies. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

15 pages, 2082 KB  
Article
Analysis and Application of Translation-Enhancing Peptides for Improved Production of Proteins Containing Polyproline
by Akimichi Yoshino, Riko Shimoji, Yuma Nishikawa, Hideo Nakano and Teruyo Ojima-Kato
SynBio 2025, 3(4), 14; https://doi.org/10.3390/synbio3040014 - 3 Oct 2025
Abstract
Polyproline residues are well known to induce ribosomal stalling during translation. Our previous work demonstrated that inserting a short translation-enhancing peptide, Ser-Lys-Ile-Lys (SKIK), immediately upstream of such difficult-to-translate sequences can significantly alleviate ribosomal stalling in Escherichia coli. In this study, we provide [...] Read more.
Polyproline residues are well known to induce ribosomal stalling during translation. Our previous work demonstrated that inserting a short translation-enhancing peptide, Ser-Lys-Ile-Lys (SKIK), immediately upstream of such difficult-to-translate sequences can significantly alleviate ribosomal stalling in Escherichia coli. In this study, we provide a quantitative evaluation of its translational effect by kinetically analyzing the influence of the SKIK peptide on polyproline motifs using a reconstituted E. coli in vitro translation system. Translation rates estimated under reasonable assumptions fitted well to a Hill equation within a Michaelis–Menten-like kinetic framework. We further revealed that repetition of the SKIK tag did not provide any positive effect on translation. Moreover, introduction of the SKIK tag increased the production of polyproline-containing proteins, including human interleukin 11, human G protein signaling modulator 3, and DUF58 domain–containing protein from Streptomyces sp. in E. coli cell-free protein synthesis. These findings not only provide new insight into the fundamental regulation of translation by nascent peptides but also demonstrate the potential of the SKIK peptide as a practical tool for synthetic biology, offering a strategy to improve the production of difficult-to-express proteins. Full article
Show Figures

Figure 1

28 pages, 492 KB  
Review
Inflammatory and Oxidative Biological Profiles in Mental Disorders: Perspectives on Diagnostics and Personalized Therapy
by Izabela Woźny-Rasała and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(19), 9654; https://doi.org/10.3390/ijms26199654 - 3 Oct 2025
Abstract
Personalized psychiatry represents an innovative therapeutic approach that integrates biological, genetic, and clinical data to optimize the treatment of mental disorders. Laboratory diagnostics play a fundamental role in this process by providing precise biomarkers that characterize pathophysiological mechanisms such as neuroinflammatory processes, oxidative [...] Read more.
Personalized psychiatry represents an innovative therapeutic approach that integrates biological, genetic, and clinical data to optimize the treatment of mental disorders. Laboratory diagnostics play a fundamental role in this process by providing precise biomarkers that characterize pathophysiological mechanisms such as neuroinflammatory processes, oxidative stress, dysfunction of the Hypothalamic–Pituitary–Adrenal (HPA) axis, as well as disturbances in neuroplasticity and neurodegeneration. This article discusses the use of advanced analytical techniques, such as immunoenzymatic assays for pro-inflammatory cytokines (Interleukin-1β- IL-1β; Interleukin-6-IL-6; Interleukin-18-IL-18; and Tumor Necrosis Factor- α - TNF-α). It also emphasizes the role of pharmacogenomic diagnostics in the individualization of psychotropic therapy. Interdisciplinary collaboration between laboratory diagnosticians and clinicians supports the potential for multidimensional analysis of biomarker data in a clinical context, which supports precise patient profiling and monitoring of treatment responses. Despite progress, there are limitations, such as the lack of standardization in measurement methods, insufficient biomarker validation, and limited availability of tests in clinical practice. Development prospects include the integration of multi-marker panels, the use of point-of-care diagnostics, and the implementation of artificial intelligence tools for the analysis of multidimensional data. As a result, laboratory diagnostics are becoming an integral element of personalized psychiatry, enabling a better understanding of the neurobiology of mental disorders and the implementation of more effective therapeutic strategies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
30 pages, 2746 KB  
Article
Neurobiological and Existential Profiles in Posttraumatic Stress Disorder: The Role of Serotonin, Cortisol, Noradrenaline, and IL-12 Across Chronicity and Age
by Barbara Paraniak-Gieszczyk and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(19), 9636; https://doi.org/10.3390/ijms26199636 - 2 Oct 2025
Abstract
Posttraumatic Stress Disorder (PTSD) is characterized by disruptions in central nervous system functioning and existential crises, yet the mechanistic links between neurobiological processes and dimensions of life meaning and identity remain underexplored. The aim of this study was to examine the relationships between [...] Read more.
Posttraumatic Stress Disorder (PTSD) is characterized by disruptions in central nervous system functioning and existential crises, yet the mechanistic links between neurobiological processes and dimensions of life meaning and identity remain underexplored. The aim of this study was to examine the relationships between stress biomarkers (serotonin, cortisol, noradrenaline, and interleukin-12 [IL-12]) and existential attitudes (measured using the Life Attitude Profile (Revised) [LAP-R]) in mining rescuers, considering PTSD duration and participant age. This cross-sectional study included 92 men aged 18–50 years, divided into three groups: no PTSD (n = 28), PTSD ≤ 5 years (n = 33), and PTSD > 5 years (n = 31). Serum levels of four biomarkers and LAP-R scores across eight domains were evaluated. Statistical analyses employed nonparametric tests, including the Kruskal–Wallis test for overall group differences (with Wilcoxon r effect sizes for pairwise comparisons, Mann–Whitney U tests for post hoc pairwise comparisons, and Spearman’s rank correlations for biomarker–LAP-R associations. Age effects were assessed in two strata: 18–35 years and 36–50 years. Kruskal–Wallis tests revealed significant group differences (p < 0.001) for all biomarkers and most LAP-R domains, with very large effect sizes (r > 0.7) in pairwise comparisons for serotonin (control median: 225.2 ng/mL vs. PTSD ≤ 5y: 109.9 ng/mL, r = 0.86; vs. PTSD > 5y: 148.0 ng/mL, r = 0.86), IL-12 (control: ~8.0 pg/mL vs. PTSD ≤ 5y: 62.4 pg/mL, r = 0.86; vs. PTSD > 5y: ~21.0 pg/mL, r = 0.69), and LAP-R scales such as Life Purpose (control: 54.0 vs. PTSD ≤ 5y: 39.0, r = 0.78; vs. PTSD > 5y: 20.0, r = 0.86) and Coherence (control: 53.0 vs. PTSD ≤ 5y: 34.0, r = 0.85; vs. PTSD > 5y: 23.0, r = 0.86). The PTSD ≤ 5y group exhibited decreased serotonin, cortisol (median: 9.8 µg/dL), and noradrenaline (271.7 pg/mL) with elevated IL-12 (all p < 0.001 vs. control), alongside reduced LAP-R scores. The PTSD > 5y group showed elevated cortisol (median: ~50.0 µg/dL, p < 0.001 vs. control, r = 0.86) and normalized IL-12 but persistent LAP-R deficits. Older participants (36–50 years) in the PTSD ≤ 5y group displayed improved existential attitudes (e.g., Life Purpose: 47.0 vs. 27.5 in 18–35 years, p < 0.001), whereas in PTSD > 5y, age exacerbated biological stress (cortisol: 57.6 µg/dL vs. 36.1 µg/dL, p = 0.003). Spearman correlations revealed stage-specific patterns, such as negative associations between cortisol and Death Acceptance in PTSD > 5y (ρ = −0.49, p = 0.005). PTSD alters biomarker levels and their associations with existential dimensions, with duration and age modulating patient profiles. These findings underscore the necessity for integrated therapies addressing both biological and existential facets of PTSD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 8074 KB  
Article
Auranofin Ameliorates Gouty Inflammation by Suppressing NLRP3 Activation and Neutrophil Migration via the IL-33/ST2–CXCL1 Axis
by Hyeyeon Yoo, Ahyoung Choi, Minjun Kim, Yongseok Gye, Hyeonju Jo, Seung-Ki Kwok, Youngjae Park and Jennifer Jooha Lee
Cells 2025, 14(19), 1541; https://doi.org/10.3390/cells14191541 - 2 Oct 2025
Abstract
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food [...] Read more.
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food and Drug Administration (FDA)-approved anti-rheumatic agent, exerts anti-inflammatory effects in both in vitro and in vivo models of gout. Auranofin inhibited NLRP3 inflammasome activation in human THP-1 cells and murine macrophages, leading to reduced cleavage of caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18). In MSU crystal-induced mouse models, auranofin treatment reduced paw swelling, serum cytokine levels, and tissue inflammation. Notably, auranofin suppressed neutrophil migration and decreased expression of C-X-C motif chemokine ligand 1 (CXCL1) in inflamed foot tissue and air-pouch exudates. Mechanistically, auranofin disrupted the interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis, a key signaling pathway promoting neutrophil recruitment. Overexpression of IL-33 abolished the anti-inflammatory effects of auranofin, highlighting the central role of IL-33 in gout pathogenesis. Together, our findings suggest that auranofin alleviates MSU-induced inflammation by concurrently inhibiting NLRP3 inflammasome activation and IL-33-mediated neutrophil recruitment, supporting its potential as a dual-action therapeutic candidate for gout. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Graphical abstract

18 pages, 5272 KB  
Article
Cyclodextrin Counteracts Coxsackievirus-Induced Cardiac Damage by Protecting Desmosome Integrity and Suppressing Proinflammatory Cytokine Expression
by Guangze Zhao, Huifang M. Zhang, Grace J. Zhang, Wenli Yang, Christoph Küper, Bruce M. McManus and Decheng Yang
Microorganisms 2025, 13(10), 2294; https://doi.org/10.3390/microorganisms13102294 - 2 Oct 2025
Abstract
Nuclear factor of activated T cells 5 (NFAT5), an osmosensitive transcription factor, has been shown to protect against coxsackievirus B3 (CVB3)-induced myocarditis but is susceptible to cleavage by viral proteases. Identifying agents that upregulate NFAT5 may offer a novel antiviral strategy. Cyclodextrins, cyclic [...] Read more.
Nuclear factor of activated T cells 5 (NFAT5), an osmosensitive transcription factor, has been shown to protect against coxsackievirus B3 (CVB3)-induced myocarditis but is susceptible to cleavage by viral proteases. Identifying agents that upregulate NFAT5 may offer a novel antiviral strategy. Cyclodextrins, cyclic oligosaccharides that influence cellular osmolality, are promising candidates. In this study, we demonstrate that NFAT5 is critical for maintaining desmosomal integrity in cardiomyocytes. Cardiac-specific Nfat5-knockout mice showed a significant reduction in desmosomes, as observed by transmission electron microscopy. Furthermore, we identified desmoplakin (DSP), a structural desmosomal protein, as a direct transcriptional target of NFAT5, with reduced expression in Nfat5-knockout mouse hearts and NFAT5-knockdown HeLa cells. Notably, treatment with 5 mM cyclodextrin significantly upregulated NFAT5 expression with minimal cytotoxicity, restored DSP expression, and suppressed CVB3 replication by inhibiting viral RNA transcription, protein synthesis, and virion production. Additionally, cyclodextrin reduced mRNA levels of proinflammatory cytokines interleukin-1 beta and interleukin-8, indicating its potential role as an alleviator of excessive cytokine production. These findings identify NFAT5 as a key regulator of desmoplakin expression and prove cyclodextrin as a dual-functioning agent in counteracting cardiac damage through NFAT5-DSP-mediated protection of desmosome integrity and suppressing proinflammatory cytokine expression in CVB3-induced myocarditis. Full article
(This article belongs to the Special Issue Viral Proteases in Viral Infection and Drug Development)
Show Figures

Figure 1

29 pages, 6121 KB  
Review
The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review
by Mxolisi P. Voko, Abdulazeez A. Ogbe, Manoj G. Kulkarni, Roger M. Coopoosamy and Johannes Van Staden
Plants 2025, 14(19), 3045; https://doi.org/10.3390/plants14193045 - 1 Oct 2025
Abstract
Bulbine species (Asphodelaceae) are routinely used in many African communities to treat various dermatological disorders, including wounds, due to their relative accessibility, affordability, safety records, and reported efficacies. However, these reported biological activities lack robust empirical evidence and well-validated cellular mechanisms for plausible [...] Read more.
Bulbine species (Asphodelaceae) are routinely used in many African communities to treat various dermatological disorders, including wounds, due to their relative accessibility, affordability, safety records, and reported efficacies. However, these reported biological activities lack robust empirical evidence and well-validated cellular mechanisms for plausible applications. Hence, this review was aimed at investigating the bioactive compounds of Bulbine species linked to their cellular wound healing attributes, their toxicity, and cytotoxicity. A detailed literature search was conducted using Web of Science, Google scholar, and PubMed, followed by Scopus and VOSviewer (version 1.6.20) bibliographic analyses. Bulbine frutescens (L.) Willd. and Bulbine natalensis Baker safely mediate tissue healing and coagulation cascade as adaptogens and cytotoxic agents. The wound healing activities of the Bulbine species were linked to the synergistic wound healing or tissue repair properties of bioactive compounds (such as saponins, terpenoids, luteolin, and apigenin) via the expression of collagen type-I, alpha-2 (COL1A2) gene, collagen III, increase in the wound tensile strength, and anti-cytokine interleukin-10 (IL-10) mRNA. Bulbine species were also reported to contain specialised biomarker compounds (such as naphthoquinones, bulbine-emodin, and aloe-emodin) which mediate the activation of hydroxyproline, Aryl Hydrocarbon Receptor, transforming growth factor beta—β1 (TGFβ1), and the suppressor of mothers against decapentaplegic proteins (SMAD), which ultimately induce tissue granulation, myofibroblast differentiation, re-epithelialization, higher protein complexes, and scar tissue formations. These findings give credence to the wound healing therapeutic potential of Bulbine species. However, additional clinical studies are necessary to further ascertain the reported efficacies of Bulbine species’ bioactive principles, their overall safety, and the underlying cellular mechanisms involved in the wound healing process and carcinogenesis. Full article
(This article belongs to the Special Issue Ethnobotany and Biodiversity Conservation in South Africa)
Show Figures

Figure 1

13 pages, 2422 KB  
Article
Co-Targeting PD-1 and IL-33/ST2 Pathways for Enhanced Acquired Anti-Tumor Immunity in Breast Cancer
by Marina Z. Jovanović, Milena Jurišević, Milan Jovanović, Nevena Gajović, Miodrag Jocić, Marina M. Jovanović, Boško Milev, Krstina Doklestić Vasiljev and Ivan Jovanović
Int. J. Mol. Sci. 2025, 26(19), 9600; https://doi.org/10.3390/ijms26199600 - 1 Oct 2025
Abstract
Despite advances in immunotherapy, the treatment of breast cancer still remains a major global problem. In a previous study, we showed that co-blockade of Interleukin-33/ST2 and Programmed death-1/Programmed death-ligand (PD-1/PD-L) signaling pathways strongly slows progression by enhancing the antitumor capacity of natural killer [...] Read more.
Despite advances in immunotherapy, the treatment of breast cancer still remains a major global problem. In a previous study, we showed that co-blockade of Interleukin-33/ST2 and Programmed death-1/Programmed death-ligand (PD-1/PD-L) signaling pathways strongly slows progression by enhancing the antitumor capacity of natural killer (NK) cells. The main aim of this study is to elucidate the exact effect of co-blockade on the T lymphocyte and macrophage effector cells. 4T1 cells were used to induct breast cancer in female BALB/C and BALB/C ST2−/− mice. The mice, both BALB/C and BALB/C ST2−/−, were treated with anti-PD-1 antibody on certain days. After the mice were sacrificed, T cells and macrophages were analyzed using flow cytometry; dual co-blockade increased significantly the percentage of M1 macrophages in the tumor microenvironment, followed by an increase in expression of CD86+ and TNFα+. T cell accumulation was significantly higher in the spleen and within the tumor microenvironment, with elevation in activation markers such as Interleukin-17, CD69, NKG2D, and FasL and a decrease in Interleukin-10 and FoxP3 expression. Co-blockade of the PD-1/PD-L axes and IL-33/ST2 axes shows promising results in reestablishing an effective immune response and offers a new perspective on improving immune response to breast carcinoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

Back to TopTop