Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (233)

Search Parameters:
Keywords = Internet of Autonomous Vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4301 KB  
Review
Powering Underwater Robotics Sensor Networks Through Ocean Energy Harvesting and Wireless Power Transfer Methods: Systematic Review
by Sverrir Jan Nordfjord, Saemundur E. Thorsteinsson and Kristinn Andersen
J. Mar. Sci. Eng. 2025, 13(9), 1728; https://doi.org/10.3390/jmse13091728 - 8 Sep 2025
Viewed by 544
Abstract
The global demand for innovative underwater applications is increasing, encompassing scientific research, commercial endeavors, and defense operations. A significant challenge these applications face is fulfilling the energy requirements of underwater devices. This challenge extends beyond powering individual devices to include the entire network [...] Read more.
The global demand for innovative underwater applications is increasing, encompassing scientific research, commercial endeavors, and defense operations. A significant challenge these applications face is fulfilling the energy requirements of underwater devices. This challenge extends beyond powering individual devices to include the entire network of underwater robotic sensors. These devices have varying energy needs; some are mobile while others are stationary, and they operate under diverse environmental conditions, such as different depths, temperatures, pressures, currents, and salinity levels. This paper compares the latest state-of-the-art research on powering underwater devices, addressing the challenges and practical considerations. It examines two primary approaches: first, energy harvesting from the natural environment, and second, the use of wireless power transfer (WPT). While energy harvesting methods have been established, their effectiveness greatly depends on the specific environment in which they are deployed, making them less viable as a universal solution. On the other hand, WPT presents its challenges, particularly as its efficiency diminishes with distance. Nonetheless, it remains a promising option, and further research is essential to explore its potential, including the integration of other technologies to develop hybrid solutions that leverage multiple power sources. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 469 KB  
Article
Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels
by Zheming Zhang, Yixin He, Yifan Lei, Zehui Cai, Fanghui Huang, Xingchen Zhao, Dawei Wang and Lujuan Li
Entropy 2025, 27(9), 907; https://doi.org/10.3390/e27090907 - 27 Aug 2025
Viewed by 623
Abstract
The increasing number of intelligent connected vehicles (ICVs) is leading to a growing scarcity of spectrum resources for the Internet of Vehicles (IoV), which has created an urgent need for the use of full-duplex non-orthogonal multiple access (FD-NOMA) techniques in vehicle-to-everything (V2X) communications. [...] Read more.
The increasing number of intelligent connected vehicles (ICVs) is leading to a growing scarcity of spectrum resources for the Internet of Vehicles (IoV), which has created an urgent need for the use of full-duplex non-orthogonal multiple access (FD-NOMA) techniques in vehicle-to-everything (V2X) communications. Meanwhile, for the flexibility of autonomous aerial vehicles (AAVs), V2X communications assisted by AAVs are regarded as a potential solution to achieve reliable communication between ICVs. However, if the integration of FD-NOMA and AAVs can satisfy the requirements of V2X communications, then quickly and accurately analyzing the total achievable rate becomes a challenge. Motivated by the above, an accurate analytical expression for the total achievable rate over Rician fading channels is proposed to evaluate the transmission performance of NOMA-enhanced AAV-assisted IoV with imperfect channel state information (CSI). Then, we derive an approximate expression with the truncated error, based on which the closed-form expression for the approximate error is theoretically provided. Finally, the simulation results demonstrate the accuracy of the obtained approximate results, where the maximum approximate error does not exceed 0.5%. Moreover, the use of the FD-NOMA technique in AAV-assisted IoV can significantly improve the total achievable rate compared to existing work. Furthermore, the influence of key network parameters (e.g., the speed and Rician factor) on achievable rate is thoroughly discussed. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

34 pages, 2219 KB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 - 24 Aug 2025
Viewed by 1086
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

35 pages, 1604 KB  
Review
Security for the Internet of Vehicles with Integration of Sensing, Communication, Computing, and Intelligence: A Comprehensive Survey
by Chao He, Wanting Wang, Wenhui Jiang, Zijian He, Jiacheng Wang and Xin Xie
Sensors 2025, 25(16), 5119; https://doi.org/10.3390/s25165119 - 18 Aug 2025
Viewed by 770
Abstract
Integration of sensing, communication, computing, and intelligence (ISCCI) represents a pivotal advancement in B5G and 6G technologies, offering transformative potential for the Internet of Vehicles (IoV). As IoV systems become increasingly integral to intelligent transportation and autonomous driving, these systems also face escalating [...] Read more.
Integration of sensing, communication, computing, and intelligence (ISCCI) represents a pivotal advancement in B5G and 6G technologies, offering transformative potential for the Internet of Vehicles (IoV). As IoV systems become increasingly integral to intelligent transportation and autonomous driving, these systems also face escalating security challenges across multiple layers, including physical, network, application, and system dimensions. (1) This paper comprehensively surveys these security issues, systematically analyzing the threats encountered at each layer and proposing targeted countermeasures to mitigate risks. (2) Furthermore, the paper explores future trends in IoV security, emphasizing the roles of 6G networks, blockchain technology, and digital twins in addressing emerging challenges. (3) Finally, based on a comprehensive review of current research and insights, this paper aims to serve as a foundational reference for advancing secure and sustainable IoV ecosystems. Full article
(This article belongs to the Special Issue Intelligent Sensing and Communications for IoT Applications)
Show Figures

Figure 1

24 pages, 5199 KB  
Article
Analysis and Proposal of Strategies for the Management of Drone Swarms Through Wi-Fi Technologies
by Guido Betcher-Sbrolla, Elena Lopez-Aguilera and Eduard Garcia-Villegas
Drones 2025, 9(8), 584; https://doi.org/10.3390/drones9080584 - 18 Aug 2025
Viewed by 829
Abstract
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE [...] Read more.
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE 802.11ah standard (Wi-Fi HaLow) combined with the IEEE 802.11ax specification (Wi-Fi 6/6E) to enable real-time video transmission from UAVs to the GCS. While airport runway inspection serves as the proof-of-concept use case, the proposed multi-hop architectures apply to other medium-range UAV operations (i.e., a few kilometers) requiring real-time video transmission, such as natural disaster relief and agricultural monitoring. Several scenarios in which a UAV swarm performs infrastructure inspection are emulated. During the missions, UAVs have to send real-time video to the GCS through a multi-hop network when some damage in the infrastructure is found. The different scenarios are studied by means of emulation. Emulated scenarios are defined using different network architectures and radio technologies. Once the emulations finish, different performance metrics related to time, energy and the multi-hop video transmission network are analyzed. The capacity of a multi-hop network is a limiting factor for the transmission of high-quality video. As a first contribution, an expression to find this capacity from distances between UAVs in the emulated scenario is found using the NS-3 simulator. Then, this expression is applied in the algorithms in charge of composing the multi-hop network to offer on-demand quality video. However, the main contribution of this work lies in the development of efficient mechanisms for exchanging control information between UAVs and the GCS, and for forming a multi-hop network to transmit video. Full article
Show Figures

Figure 1

27 pages, 3200 KB  
Article
IoT-Enhanced Multi-Base Station Networks for Real-Time UAV Surveillance and Tracking
by Zhihua Chen, Tao Zhang and Tao Hong
Drones 2025, 9(8), 558; https://doi.org/10.3390/drones9080558 - 8 Aug 2025
Viewed by 622
Abstract
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a [...] Read more.
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a four-layer design—terminal, edge, IoT platform, and cloud—stations exchange raw echoes and low-level features in real time, while adaptive beam registration and cross-correlation timing mitigate spatial and temporal misalignments. A hybrid processing pipeline first produces coarse data-level estimates and then applies symbol-level refinements, sustaining rapid response without sacrificing precision. Simulation evaluations using multi-band ISAC waveforms confirm high detection reliability, sub-frame latency, and energy-aware operation in dense urban clutter, adverse weather, and multi-target scenarios. Preliminary hardware tests validate the feasibility of the proposed signal processing approach. Simulation analysis demonstrates detection accuracy of 85–90% under optimal conditions with processing latency of 15–25 ms and potential energy efficiency improvement of 10–20% through cooperative operation, pending real-world validation. By extending coverage, suppressing blind zones, and supporting dynamic surveillance of fast-moving UAVs, the proposed system provides a scalable path toward smart city air safety networks, cooperative autonomous navigation aids, and other remote-sensing applications that require agile, coordinated situational awareness. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

24 pages, 3366 KB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Viewed by 506
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
Show Figures

Figure 1

25 pages, 22731 KB  
Article
Scalable and Efficient GCL Scheduling for Time-Aware Shaping in Autonomous and Cyber-Physical Systems
by Chengwei Zhang and Yun Wang
Future Internet 2025, 17(8), 321; https://doi.org/10.3390/fi17080321 - 22 Jul 2025
Viewed by 467
Abstract
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring [...] Read more.
The evolution of the internet towards supporting time-critical applications, such as industrial cyber-physical systems (CPSs) and autonomous systems, has created an urgent demand for networks capable of providing deterministic, low-latency communication. Autonomous vehicles represent a particularly challenging use case within this domain, requiring both reliability and determinism for massive data streams—a requirement that traditional Ethernet technologies cannot satisfy. This paper addresses this critical gap by proposing a comprehensive scheduling framework based on Time-Aware Shaping (TAS) within the Time-Sensitive Networking (TSN) standard. The framework features two key contributions: (1) a novel baseline scheduling algorithm that incorporates a sub-flow division mechanism to enhance schedulability for high-bandwidth streams, computing Gate Control Lists (GCLs) via an iterative SMT-based method; (2) a separate heuristic-based computation acceleration algorithm to enable fast, scalable GCL generation for large-scale networks. Through extensive simulations, the proposed baseline algorithm demonstrates a reduction in end-to-end latency of up to 59% compared to standard methods, with jitter controlled at the nanosecond level. The acceleration algorithm is shown to compute schedules for 200 data streams in approximately one second. The framework’s effectiveness is further validated on a real-world TSN hardware testbed, confirming its capability to achieve deterministic transmission with low latency and jitter in a physical environment. This work provides a practical and scalable solution for deploying deterministic communication in complex autonomous and cyber-physical systems. Full article
Show Figures

Figure 1

19 pages, 626 KB  
Article
A Strong Anonymous Privacy Protection Authentication Scheme Based on Certificateless IOVs
by Xiaohu He, Shan Gao, Hua Wang and Chuyan Wang
Symmetry 2025, 17(7), 1163; https://doi.org/10.3390/sym17071163 - 21 Jul 2025
Viewed by 312
Abstract
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing [...] Read more.
The Internet of Vehicles (IoVs) uses vehicles as the main carrier to communicate with other entities, promoting efficient transmission and sharing of traffic data. Using real identities for communication may leak private data, so pseudonyms are commonly used as identity credentials. However, existing anonymous authentication schemes have limitations, including large vehicle storage demands, information redundancy, time-dependent pseudonym updates, and public–private key updates coupled with pseudonym changes. To address these issues, we propose a certificateless strong anonymous privacy protection authentication scheme that allows vehicles to autonomously generate and dynamically update pseudonyms. Additionally, the trusted authority transmits each entity’s partial private key via a session key, eliminating reliance on secure channels during transmission. Based on the elliptic curve discrete logarithm problem, the scheme’s existential unforgeability is proven in the random oracle model. Performance analysis shows that it outperforms existing schemes in computational cost and communication overhead, with the total computational cost reduced by 70.29–91.18% and communication overhead reduced by 27.75–82.55%, making it more suitable for privacy-sensitive and delay-critical IoV environments. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Applied Cryptography)
Show Figures

Figure 1

39 pages, 7470 KB  
Article
Estimation of Fractal Dimension and Semantic Segmentation of Motion-Blurred Images by Knowledge Distillation in Autonomous Vehicle
by Seong In Jeong, Min Su Jeong and Kang Ryoung Park
Fractal Fract. 2025, 9(7), 460; https://doi.org/10.3390/fractalfract9070460 - 15 Jul 2025
Viewed by 781
Abstract
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust [...] Read more.
Research on semantic segmentation for remote sensing road scenes advanced significantly, driven by autonomous driving technology. However, motion blur from camera or subject movements hampers segmentation performance. To address this issue, we propose a knowledge distillation-based semantic segmentation network (KDS-Net) that is robust to motion blur, eliminating the need for image restoration networks. KDS-Net leverages innovative knowledge distillation techniques and edge-enhanced segmentation loss to refine edge regions and improve segmentation precision across various receptive fields. To enhance the interpretability of segmentation quality under motion blur, we incorporate fractal dimension estimation to quantify the geometric complexity of class-specific regions, allowing for a structural assessment of predictions generated by the proposed knowledge distillation framework for autonomous driving. Experiments on well-known motion-blurred remote sensing road scene datasets (CamVid and KITTI) demonstrate mean IoU scores of 72.42% and 59.29%, respectively, surpassing state-of-the-art methods. Additionally, the lightweight KDS-Net (21.44 M parameters) enables real-time edge computing, mitigating data privacy concerns and communication overheads in internet of vehicles scenarios. Full article
Show Figures

Figure 1

26 pages, 1171 KB  
Review
Key Considerations for Real-Time Object Recognition on Edge Computing Devices
by Nico Surantha and Nana Sutisna
Appl. Sci. 2025, 15(13), 7533; https://doi.org/10.3390/app15137533 - 4 Jul 2025
Viewed by 3255
Abstract
The rapid growth of the Internet of Things (IoT) and smart devices has led to an increasing demand for real-time data processing at the edge of networks closer to the source of data generation. This review paper introduces how artificial intelligence (AI) can [...] Read more.
The rapid growth of the Internet of Things (IoT) and smart devices has led to an increasing demand for real-time data processing at the edge of networks closer to the source of data generation. This review paper introduces how artificial intelligence (AI) can be integrated with edge computing to enable efficient and scalable object recognition applications. It covers the key considerations of employing deep learning on edge computing devices, such as selecting edge devices, deep learning frameworks, lightweight deep learning models, hardware optimization, and performance metrics. An example of an application is also presented in this article, which is about real-time power transmission line detection using edge computing devices. The evaluation results show the significance of implementing lightweight models and model compression techniques such as quantized Tiny YOLOv7. It also shows the hardware performance on some edge devices, such as Raspberry Pi and Jetson platforms. Through practical examples, readers will gain insights into designing and implementing AI-powered edge solutions for various object recognition use cases, including smart surveillance, autonomous vehicles, and industrial automation. The review concludes by addressing emerging trends, such as federated learning and hardware accelerators, which are set to shape the future of AI on edge computing for object recognition. Full article
Show Figures

Figure 1

23 pages, 7503 KB  
Article
EMF Exposure of Workers Due to 5G Private Networks in Smart Industries
by Peter Gajšek, Christos Apostolidis, David Plets, Theodoros Samaras and Blaž Valič
Electronics 2025, 14(13), 2662; https://doi.org/10.3390/electronics14132662 - 30 Jun 2025
Viewed by 877
Abstract
5G private mobile networks are becoming a platform for ‘wire-free’ networking for professional applications in smart industry sectors, such as automated warehousing, logistics, autonomous vehicle deployments in campus environments, mining, material processing, and more. It is expected that most of these Machine-to-Machine (M2M) [...] Read more.
5G private mobile networks are becoming a platform for ‘wire-free’ networking for professional applications in smart industry sectors, such as automated warehousing, logistics, autonomous vehicle deployments in campus environments, mining, material processing, and more. It is expected that most of these Machine-to-Machine (M2M) and Industrial Internet of Things (IIoT) communication paths will be realized wirelessly, as the advantages of providing flexibility are obvious compared to hard-wired network installations. Unfortunately, the deployment of private 5G networks in smart industries has faced delays due to a combination of high costs, technical challenges, and uncertain returns on investment, which is reflected in troublesome access to fully operational private networks. To obtain insight into occupational exposure to radiofrequency electromagnetic fields (RF EMF) emitted by 5G private mobile networks, an analysis of RF EMF due to different types of 5G equipment was carried out on a real case scenario in the production and logistic (warehouse) industrial sector. A private standalone (SA) 5G network operating at 3.7 GHz in a real industrial environment was numerically modeled and compared with in situ RF EMF measurements. The results show that RF EMF exposure of the workers was far below the existing exposure limits due to the relatively low power (1 W) of indoor 5G base stations in private networks, and thus similar exposure scenarios could also be expected in other deployed 5G networks. In the analyzed RF EMF exposure scenarios, the radio transmitter—so-called ‘radio head’—installation heights were relatively low, and thus the obtained results represent the worst-case scenarios of the workers’ exposure that are to be expected due to private 5G networks in smart industries. Full article
(This article belongs to the Special Issue Innovations in Electromagnetic Field Measurements and Applications)
Show Figures

Figure 1

22 pages, 5161 KB  
Article
AUV Trajectory Planning for Optimized Sensor Data Collection in Internet of Underwater Things
by Talal S. Almuzaini and Andrey V. Savkin
Future Internet 2025, 17(7), 293; https://doi.org/10.3390/fi17070293 - 30 Jun 2025
Viewed by 468
Abstract
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for [...] Read more.
Efficient and timely data collection in Underwater Acoustic Sensor Networks (UASNs) for Internet of Underwater Things (IoUT) applications remains a significant challenge due to the inherent limitations of the underwater environment. This paper presents a Value of Information (VoI)-based trajectory planning framework for a single Autonomous Underwater Vehicle (AUV) operating in coordination with an Unmanned Surface Vehicle (USV) to collect data from multiple Cluster Heads (CHs) deployed across an uneven seafloor. The proposed approach employs a VoI model that captures both the importance and timeliness of sensed data, guiding the AUV to collect and deliver critical information before its value significantly degrades. A forward Dynamic Programming (DP) algorithm is used to jointly optimize the AUV’s trajectory and the USV’s start and end positions, with the objective of maximizing the total residual VoI upon mission completion. The trajectory design incorporates the AUV’s kinematic constraints into travel time estimation, enabling accurate VoI evaluation throughout the mission. Simulation results show that the proposed strategy consistently outperforms conventional baselines in terms of residual VoI and overall system efficiency. These findings highlight the advantages of VoI-aware planning and AUV–USV collaboration for effective data collection in challenging underwater environments. Full article
Show Figures

Figure 1

23 pages, 1575 KB  
Article
An Integrated Blockchain Framework for Secure Autonomous Vehicle Communication System
by Juan de Anda-Suárez, José Luis López-Ramírez, Daniel Jimenez-Mendoza, José Manuel Benitez-Quintero, Eli Gabriel Avina-Bravo, David Asael Gutierrez-Hernandez and Juan Gabriel Avina-Cervantes
Information 2025, 16(7), 557; https://doi.org/10.3390/info16070557 - 30 Jun 2025
Viewed by 837
Abstract
Autonomous Vehicles (AV) have been extensively studied in both scientific and social contexts. Over the past two decades, there has been a significant rise in their real-world applications, including neural networks, Blockchain, Internet of Things, autonomous navigation, computer vision, automation processes, and various [...] Read more.
Autonomous Vehicles (AV) have been extensively studied in both scientific and social contexts. Over the past two decades, there has been a significant rise in their real-world applications, including neural networks, Blockchain, Internet of Things, autonomous navigation, computer vision, automation processes, and various other areas. Hence, it is imperative to investigate the interplay between software, hardware, and individuals. To guarantee secure and unaffected interactions within autonomous vehicle devices and networks, decentralized Blockchain technology is proposed. This study presents the introduction of a framework we named “DEMU-NAV” for an ecosystem that includes Artificial Intelligence (AI), humans, and robots. The framework makes use of a decentralized Blockchain, Smart-Contract (SC), and Internet of things (IoT) network. Our framework was implemented using Ethereum and Python, enabling us to oversee Blockchain, Smart-Contracts, and the IoT for the facilitation of autonomous vehicle navigation. Full article
(This article belongs to the Special Issue Blockchain, Technology and Its Application)
Show Figures

Graphical abstract

22 pages, 3499 KB  
Article
An Improved Soft Actor–Critic Task Offloading and Edge Computing Resource Allocation Algorithm for Image Segmentation Tasks in the Internet of Vehicles
by Wei Zou, Haitao Yu, Boran Yang, Aohui Ren and Wei Liu
World Electr. Veh. J. 2025, 16(7), 353; https://doi.org/10.3390/wevj16070353 - 25 Jun 2025
Viewed by 553
Abstract
This paper addresses the challenge of offloading resource-intensive image segmentation tasks and allocating computing resources within the Internet of Vehicles (IoV) using edge-based AI. To overcome the limitations of onboard computing in smart vehicles, this study develops an efficient edge computing resource allocation [...] Read more.
This paper addresses the challenge of offloading resource-intensive image segmentation tasks and allocating computing resources within the Internet of Vehicles (IoV) using edge-based AI. To overcome the limitations of onboard computing in smart vehicles, this study develops an efficient edge computing resource allocation system. The core of this system is an improved model-free soft actor–critic (iSAC) algorithm, which is enhanced by incorporating prioritized experience replay (PER). This PER-iSAC algorithm is designed to accelerate the learning process, maintain stability, and improve the efficiency and accuracy of computation offloading. Furthermore, an integrated computing and networking scheduling framework is employed to minimize overall task completion time. Simulation experiments were conducted to compare the PER-iSAC algorithm against baseline algorithms (Standard SAC and PPO). The results demonstrate that the proposed PER-iSAC significantly reduces task allocation error rates and optimizes task completion times. This research offers a practical engineering solution for enhancing the computational capabilities of IoV systems, thereby contributing to the development of more responsive and reliable autonomous driving applications. Full article
Show Figures

Figure 1

Back to TopTop