Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,336)

Search Parameters:
Keywords = Internet of Vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4866 KB  
Article
3D Spatial Path Planning Based on Improved Particle Swarm Optimization
by Junxia Ma, Zixu Yang and Ming Chen
Future Internet 2025, 17(9), 406; https://doi.org/10.3390/fi17090406 - 5 Sep 2025
Abstract
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and [...] Read more.
Three-dimensional path planning is critical for the successful operation of unmanned aerial vehicles (UAVs), automated guided vehicles (AGVs), and robots in industrial Internet of Things (IIoT) applications. In 3D path planning, the standard Particle Swarm Optimization (PSO) algorithm suffers from premature convergence and a tendency to fall into local optima, leading to significant deviations from the optimal path. This paper proposes an improved PSO (IPSO) algorithm that enhances particle diversity and randomness through the introduction of logistic chaotic mapping, while employing dynamic learning factors and nonlinear inertia weights to improve global search capability. Experimental results demonstrate that IPSO outperforms traditional methods in terms of path length and computational efficiency, showing potential for real-time path planning in complex environments. Full article
24 pages, 3395 KB  
Article
ECACS: An Enhanced Certificateless Authentication Scheme for Smart Car Sharing
by Zhuowei Shen, Xiao Kou and Taiyao Yang
Sensors 2025, 25(17), 5441; https://doi.org/10.3390/s25175441 - 2 Sep 2025
Viewed by 220
Abstract
Driven by the demand for cost-effective vehicle access, enhanced flexibility, and sustainable transportation practices, smart car-sharing has emerged as a prominent alternative to traditional vehicle rental systems. Leveraging the Internet of Vehicles (IoV) and wireless communication, these systems feature dynamic renter-vehicle mappings, enabling [...] Read more.
Driven by the demand for cost-effective vehicle access, enhanced flexibility, and sustainable transportation practices, smart car-sharing has emerged as a prominent alternative to traditional vehicle rental systems. Leveraging the Internet of Vehicles (IoV) and wireless communication, these systems feature dynamic renter-vehicle mappings, enabling users to access any available vehicle rather than being restricted to a specific one pre-assigned by the service provider. However, many existing schemes in the IoV field conflate users and vehicles, complicating the identification and tracking of the vehicle’s actual driver. Moreover, most current authentication protocols rely on a strict, initial binding between a user and a vehicle, rendering them unsuitable for the dynamic nature of car-sharing environments. To address these challenges, we propose an enhanced certificateless signature scheme tailored for smart car-sharing. By employing a biometric fuzzy extractor and the Chinese Remainder Theorem, our scheme provides a fine-grained authentication mechanism that eliminates the need for local computations on the user’s side, meaning users do not require a smartphone or other digital device. Furthermore, our scheme introduces category identifiers to facilitate vehicle selection based on specific classes within car-sharing contexts. A formal security analysis demonstrates that our scheme is existentially unforgeable against adversaries under the random oracle model. Finally, a comprehensive evaluation shows that our proposed scheme achieves competitive performance in terms of computational and communication overhead while offering enhanced practical functionalities. Full article
(This article belongs to the Special Issue IoT Cybersecurity: 2nd Edition)
Show Figures

Figure 1

13 pages, 2338 KB  
Article
High-Accuracy Deep Learning-Based Detection and Classification Model in Color-Shift Keying Optical Camera Communication Systems
by Francisca V. Vera Vera, Leonardo Muñoz, Francisco Pérez, Lisandra Bravo Alvarez, Samuel Montejo-Sánchez, Vicente Matus Icaza, Lien Rodríguez-López and Gabriel Saavedra
Sensors 2025, 25(17), 5435; https://doi.org/10.3390/s25175435 - 2 Sep 2025
Viewed by 190
Abstract
The growing number of connected devices has strained traditional radio frequency wireless networks, driving interest in alternative technologies such as optical wireless communications (OWC). Among OWC solutions, optical camera communication (OCC) stands out as a cost-effective option because it leverages existing devices equipped [...] Read more.
The growing number of connected devices has strained traditional radio frequency wireless networks, driving interest in alternative technologies such as optical wireless communications (OWC). Among OWC solutions, optical camera communication (OCC) stands out as a cost-effective option because it leverages existing devices equipped with cameras, such as smartphones and security systems, without requiring specialized hardware. This paper proposes a novel deep learning-based detection and classification model designed to optimize the receiver’s performance in an OCC system utilizing color-shift keying (CSK) modulation. The receiver was experimentally validated using an 8×8 LED matrix transmitter and a CMOS camera receiver, achieving reliable communication over distances ranging from 30 cm to 3 m under varying ambient conditions. The system employed CSK modulation to encode data into eight distinct color-based symbols transmitted at fixed frequencies. Captured image sequences of these transmissions were processed through a YOLOv8-based detection and classification framework, which achieved 98.4% accuracy in symbol recognition. This high precision minimizes transmission errors, validating the robustness of the approach in real-world environments. The results highlight OCC’s potential for low-cost applications, where high-speed data transfer and long-range are unnecessary, such as Internet of Things connectivity and vehicle-to-vehicle communication. Future work will explore adaptive modulation and coding schemes as well as the integration of more advanced deep learning architectures to improve data rates and system scalability. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

23 pages, 881 KB  
Review
Generative AI for the Internet of Vehicles: A Review of Advances in Training, Decision-Making, and Security
by Xiaoming Yuan, Xinling Zhang, Aiwen Wang, Jiaxin Zhou, Yingying Du, Qingxu Deng and Lei Liu
Mathematics 2025, 13(17), 2795; https://doi.org/10.3390/math13172795 - 31 Aug 2025
Viewed by 267
Abstract
Generative artificial intelligence (GAI) has emerged as a transformative force in the Internet of Vehicles (IoV), addressing limitations of traditional AI such as reliance on large labeled datasets and narrow task applicability. This paper aims to systematically review recent advances in applying GAI [...] Read more.
Generative artificial intelligence (GAI) has emerged as a transformative force in the Internet of Vehicles (IoV), addressing limitations of traditional AI such as reliance on large labeled datasets and narrow task applicability. This paper aims to systematically review recent advances in applying GAI to the IoV, with a focus on training, decision-making, and security. We begin by introducing the fundamental concepts of vehicular networks and GAI, laying the groundwork for readers to better understand the subsequent sections. Methodologically, we adopt a structured literature review, covering developments in synthetic data generation, dynamic scene reconstruction, traffic flow prediction, anomaly detection, communication management, and resource allocation. In particular, we integrate multimodal GAI capabilities with 5G/6G-enabled edge computing to support low-latency, reliable, and adaptive vehicular network services. Our synthesis identifies key technical challenges, including lightweight model deployment, privacy preservation, and security assurance, and outlines promising future research directions. This review provides a comprehensive reference for advancing intelligent IoV systems through GAI. Full article
Show Figures

Figure 1

37 pages, 3366 KB  
Article
Golden Seal Project: An IoT-Driven Framework for Marine Litter Monitoring and Public Engagement in Tourist Areas
by Dimitra Tzanetou, Stavros Ponis, Eleni Aretoulaki, George Plakas and Antonios Kitsantas
Appl. Sci. 2025, 15(17), 9564; https://doi.org/10.3390/app15179564 - 30 Aug 2025
Viewed by 197
Abstract
This paper presents the research outcomes of the Golden Seal project, which addresses the omnipresent issue of plastic pollution in coastal areas while enhancing their touristic value through the deployment of Internet of Things (IoT) technologies integrated into a gamified recycling framework. The [...] Read more.
This paper presents the research outcomes of the Golden Seal project, which addresses the omnipresent issue of plastic pollution in coastal areas while enhancing their touristic value through the deployment of Internet of Things (IoT) technologies integrated into a gamified recycling framework. The developed system employs an IoT-enabled Wireless Sensor Network (WSN) to systematically collect, transmit, and analyze environmental data. A centralized, cloud-based platform supports real-time monitoring and data integration from Unmanned Aerial and Surface Vehicles (UAV and USV) equipped with sensors and high-resolution cameras. The system also introduces the Beach Cleanliness Index (BCI), a composite indicator that integrates quantitative environmental metrics with user-generated feedback to assess coastal cleanliness in real time. A key innovation of the project’s architecture is the incorporation of a Serious Game (SG), designed to foster public awareness and encourage active participation by local communities and municipal authorities in sustainable waste management practices. Pilot implementations were conducted at selected sites characterized by high tourism activity and accessibility. The results demonstrated the system’s effectiveness in detecting and classifying plastic waste in both coastal and terrestrial settings, while also validating the potential of the Golden Seal initiative to promote sustainable tourism and support marine ecosystem protection. Full article
Show Figures

Figure 1

15 pages, 4744 KB  
Article
Laser-Induced Graphene-Based Strain Sensor Array Integrated into Smart Tires for a Load Perception
by Shaojie Yuan, Longtao Li, Xiaopeng Du, Zhongli Li, Yijian Liu and Xingyu Ma
Micromachines 2025, 16(9), 994; https://doi.org/10.3390/mi16090994 - 29 Aug 2025
Viewed by 192
Abstract
Tire deformation monitoring is a critical requirement for improving vehicle safety, performance, and intelligent transportation systems. However, most existing flexible strain sensors either lack directional sensitivity or have not been validated in real-world driving environments, limiting their practical application in smart tires. In [...] Read more.
Tire deformation monitoring is a critical requirement for improving vehicle safety, performance, and intelligent transportation systems. However, most existing flexible strain sensors either lack directional sensitivity or have not been validated in real-world driving environments, limiting their practical application in smart tires. In this work, we report the fabrication of a flexible piezoresistive strain sensor based on a porous laser-induced graphene (LIG) network embedded in an Ecoflex elastomer matrix, with integrated directional force recognition. The LIG–Ecoflex sensor exhibits a high gauge factor of 9.7, fast response and recovery times, and stable performance over 10,000 cycles. More importantly, the anisotropic structure of the LIG enables accurate multi-directional stress recognition when combined with a convolutional neural network (CNN), achieving an overall classification accuracy exceeding 98%. To further validate real-world applicability, the sensor was mounted inside passenger car tires and tested under different loads and speeds. The results demonstrate reliable monitoring of tire deformation with clear correlations to load and velocity, confirming robustness under dynamic driving conditions. This study provides a new pathway for the integration of direction-aware, high-performance strain sensors into intelligent tire systems, with broader potential for wearable electronics, vehicle health monitoring, and next-generation Internet of Vehicles applications. Full article
Show Figures

Figure 1

17 pages, 1384 KB  
Article
Forming Teams of Smart Objects to Support Mobile Edge Computing for IoT-Based Connected Vehicles
by Fabrizio Messina, Domenico Rosaci and Giuseppe M. L. Sarnè
Appl. Sci. 2025, 15(17), 9483; https://doi.org/10.3390/app15179483 - 29 Aug 2025
Viewed by 173
Abstract
This paper proposes a collaborative framework to support task offloading in connected vehicular environments. The approach relies on the dynamic formation of temporary teams of connected vehicles in a mobile edge computing scenario. A novel trust model is introduced, which integrates both quality [...] Read more.
This paper proposes a collaborative framework to support task offloading in connected vehicular environments. The approach relies on the dynamic formation of temporary teams of connected vehicles in a mobile edge computing scenario. A novel trust model is introduced, which integrates both quality of service and quality of results into a unified reliability score, and combines this score with distributed reputation to build a comprehensive trust metric. This trust metric is then exploited to guide a decentralized team formation algorithm, ensuring lightweight, interpretable, and scalable decision-making processes. Simulation results demonstrate that the proposed framework improves task execution quality and fairness, especially for low-performing vehicles. These contributions highlight the novelty and strengths of our collaborative model, positioning it as a promising solution for enhancing cooperation in vehicular edge systems. Full article
(This article belongs to the Special Issue Communication Technology for Smart Mobility Systems)
Show Figures

Figure 1

14 pages, 469 KB  
Article
Performance Analysis of Non-Orthogonal Multiple Access-Enhanced Autonomous Aerial Vehicle-Assisted Internet of Vehicles over Rician Fading Channels
by Zheming Zhang, Yixin He, Yifan Lei, Zehui Cai, Fanghui Huang, Xingchen Zhao, Dawei Wang and Lujuan Li
Entropy 2025, 27(9), 907; https://doi.org/10.3390/e27090907 - 27 Aug 2025
Viewed by 293
Abstract
The increasing number of intelligent connected vehicles (ICVs) is leading to a growing scarcity of spectrum resources for the Internet of Vehicles (IoV), which has created an urgent need for the use of full-duplex non-orthogonal multiple access (FD-NOMA) techniques in vehicle-to-everything (V2X) communications. [...] Read more.
The increasing number of intelligent connected vehicles (ICVs) is leading to a growing scarcity of spectrum resources for the Internet of Vehicles (IoV), which has created an urgent need for the use of full-duplex non-orthogonal multiple access (FD-NOMA) techniques in vehicle-to-everything (V2X) communications. Meanwhile, for the flexibility of autonomous aerial vehicles (AAVs), V2X communications assisted by AAVs are regarded as a potential solution to achieve reliable communication between ICVs. However, if the integration of FD-NOMA and AAVs can satisfy the requirements of V2X communications, then quickly and accurately analyzing the total achievable rate becomes a challenge. Motivated by the above, an accurate analytical expression for the total achievable rate over Rician fading channels is proposed to evaluate the transmission performance of NOMA-enhanced AAV-assisted IoV with imperfect channel state information (CSI). Then, we derive an approximate expression with the truncated error, based on which the closed-form expression for the approximate error is theoretically provided. Finally, the simulation results demonstrate the accuracy of the obtained approximate results, where the maximum approximate error does not exceed 0.5%. Moreover, the use of the FD-NOMA technique in AAV-assisted IoV can significantly improve the total achievable rate compared to existing work. Furthermore, the influence of key network parameters (e.g., the speed and Rician factor) on achievable rate is thoroughly discussed. Full article
(This article belongs to the Special Issue Space-Air-Ground-Sea Integrated Communication Networks)
Show Figures

Figure 1

19 pages, 2993 KB  
Article
DDPG-Based Computation Offloading Strategy for Maritime UAV
by Ziyue Zhao, Yanli Xu and Qianlian Yu
Electronics 2025, 14(17), 3376; https://doi.org/10.3390/electronics14173376 - 25 Aug 2025
Viewed by 317
Abstract
With the development of the maritime Internet of Things (MIoT), a large number of sensors are deployed, generating massive amounts of data. However, due to the limited data processing capabilities of the sensors and the constrained service capacity of maritime communication networks, the [...] Read more.
With the development of the maritime Internet of Things (MIoT), a large number of sensors are deployed, generating massive amounts of data. However, due to the limited data processing capabilities of the sensors and the constrained service capacity of maritime communication networks, the local and cloud data processing of MIoT are restricted. Thus, there is a pressing demand for efficient edge-based data processing solutions. In this paper, we investigate unmanned aerial vehicle (UAV)-assisted maritime edge computing networks. Under energy constraints of both UAV and MIoT devices, we propose a Deep Deterministic Policy Gradient (DDPG)-based maritime computation offloading and resource allocation algorithm to efficiently process MIoT tasks current form of UAV. The algorithm jointly optimizes task offloading ratios, UAV trajectory planning, and edge computing resource allocation to minimize total system task latency while satisfying energy consumption constraints. Simulation results validate its effectiveness and robustness in highly dynamic maritime environments. Full article
(This article belongs to the Special Issue Parallel, Distributed, Edge Computing in UAV Communication)
Show Figures

Figure 1

34 pages, 2219 KB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 - 24 Aug 2025
Viewed by 682
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 2971 KB  
Article
Cooperative Schemes for Joint Latency and Energy Consumption Minimization in UAV-MEC Networks
by Ming Cheng, Saifei He, Yijin Pan, Min Lin and Wei-Ping Zhu
Sensors 2025, 25(17), 5234; https://doi.org/10.3390/s25175234 - 22 Aug 2025
Viewed by 624
Abstract
The Internet of Things (IoT) has promoted emerging applications that require massive device collaboration, heavy computation, and stringent latency. Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) systems can provide flexible services for user devices (UDs) with wide coverage. The optimization of both [...] Read more.
The Internet of Things (IoT) has promoted emerging applications that require massive device collaboration, heavy computation, and stringent latency. Unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) systems can provide flexible services for user devices (UDs) with wide coverage. The optimization of both latency and energy consumption remains a critical yet challenging task due to the inherent trade-off between them. Joint association, offloading, and computing resource allocation are essential to achieving satisfying system performance. However, these processes are difficult due to the highly dynamic environment and the exponentially increasing complexity of large-scale networks. To address these challenges, we introduce a carefully designed cost function to balance the latency and the energy consumption, formulate the joint problem into a partially observable Markov decision process, and propose two multi-agent deep-reinforcement-learning-based schemes to tackle the long-term problem. Specifically, the multi-agent proximal policy optimization (MAPPO)-based scheme uses centralized learning and decentralized execution, while the closed-form enhanced multi-armed bandit (CF-MAB)-based scheme decouples association from offloading and computing resource allocation. In both schemes, UDs act as independent agents that learn from environmental interactions and historic decisions, make decision to maximize its individual reward function, and achieve implicit collaboration through the reward mechanism. The numerical results validate the effectiveness and show the superiority of our proposed schemes. The MAPPO-based scheme enables collaborative agent decisions for high performance in complex dynamic environments, while the CF-MAB-based scheme supports independent rapid response decisions. Full article
Show Figures

Figure 1

18 pages, 3196 KB  
Article
Multi-Agent DDPG-Based Multi-Device Charging Scheduling for IIoT Smart Grids
by Haiyong Zeng, Yuanyan Huang, Kaijie Zhan, Zichao Yu, Hongyan Zhu and Fangyan Li
Sensors 2025, 25(17), 5226; https://doi.org/10.3390/s25175226 - 22 Aug 2025
Viewed by 555
Abstract
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in [...] Read more.
As electric vehicles (EVs) gain widespread adoption in industrial environments supported by Industrial Internet of Things (IIoT) smart grids technology, coordinated charging of multiple EVs has become vital for maintaining grid stability. In response to the scalability challenges faced by traditional algorithms in multi-device environments and the limitations of discrete action spaces in continuous control scenarios, this paper proposes a dynamic charging scheduling algorithm for EVs based on Multi-Agent Deep Deterministic Policy Gradient (MADDPG). The algorithm combines real-time electricity prices, battery status monitoring, and distributed sensor data to dynamically optimize charging and discharging strategies of multiple EVs in continuous action spaces. The goal is to reduce charging costs and balance grid load through coordinated multi-agent learning. Experimental results show that, compared with baseline methods, the proposed MADDPG algorithm achieves a 41.12% cost reduction over a 30-day evaluation period. Additionally, it effectively adapts to price fluctuations and user demand changes through Vehicle-to-Grid technology, optimizing charging time allocation and enhancing grid stability. Full article
(This article belongs to the Special Issue Smart Sensors, Smart Grid and Energy Management)
Show Figures

Figure 1

34 pages, 1151 KB  
Article
Innovative Technologies to Improve Occupational Safety in Mining and Construction Industries—Part I
by Paweł Bęś, Paweł Strzałkowski, Justyna Górniak-Zimroz, Mariusz Szóstak and Mateusz Janiszewski
Sensors 2025, 25(16), 5201; https://doi.org/10.3390/s25165201 - 21 Aug 2025
Viewed by 908
Abstract
Innovative technologies have been helping to improve comfort and safety at work in high-risk sectors for years. The study analysed the impact, along with an assessment of potential implementations (opportunities and limitations) of innovative technological solutions for improving occupational safety in two selected [...] Read more.
Innovative technologies have been helping to improve comfort and safety at work in high-risk sectors for years. The study analysed the impact, along with an assessment of potential implementations (opportunities and limitations) of innovative technological solutions for improving occupational safety in two selected sectors of the economy: mining and construction. The technologies evaluated included unmanned aerial vehicles and inspection robots, the Internet of Things and sensors, artificial intelligence, virtual and augmented reality, innovative individual and collective protective equipment, and exoskeletons. Due to the extensive nature of the obtained materials, the research description has been divided into two articles (Part I and Part II). This article presents the first three technologies. After the scientific literature from the Scopus database was analysed, some research gaps that need to be filled were identified. In addition to the obvious benefits of increased occupational safety for workers, innovative technological solutions also offer employers several economic advantages that affect the industry’s sustainability. Innovative technologies are playing an increasingly important role in improving safety in mining and construction. However, further integration and overcoming implementation barriers, such as the need for changes in education, are needed to realise their full potential. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

35 pages, 1604 KB  
Review
Security for the Internet of Vehicles with Integration of Sensing, Communication, Computing, and Intelligence: A Comprehensive Survey
by Chao He, Wanting Wang, Wenhui Jiang, Zijian He, Jiacheng Wang and Xin Xie
Sensors 2025, 25(16), 5119; https://doi.org/10.3390/s25165119 - 18 Aug 2025
Viewed by 502
Abstract
Integration of sensing, communication, computing, and intelligence (ISCCI) represents a pivotal advancement in B5G and 6G technologies, offering transformative potential for the Internet of Vehicles (IoV). As IoV systems become increasingly integral to intelligent transportation and autonomous driving, these systems also face escalating [...] Read more.
Integration of sensing, communication, computing, and intelligence (ISCCI) represents a pivotal advancement in B5G and 6G technologies, offering transformative potential for the Internet of Vehicles (IoV). As IoV systems become increasingly integral to intelligent transportation and autonomous driving, these systems also face escalating security challenges across multiple layers, including physical, network, application, and system dimensions. (1) This paper comprehensively surveys these security issues, systematically analyzing the threats encountered at each layer and proposing targeted countermeasures to mitigate risks. (2) Furthermore, the paper explores future trends in IoV security, emphasizing the roles of 6G networks, blockchain technology, and digital twins in addressing emerging challenges. (3) Finally, based on a comprehensive review of current research and insights, this paper aims to serve as a foundational reference for advancing secure and sustainable IoV ecosystems. Full article
(This article belongs to the Special Issue Intelligent Sensing and Communications for IoT Applications)
Show Figures

Figure 1

24 pages, 5199 KB  
Article
Analysis and Proposal of Strategies for the Management of Drone Swarms Through Wi-Fi Technologies
by Guido Betcher-Sbrolla, Elena Lopez-Aguilera and Eduard Garcia-Villegas
Drones 2025, 9(8), 584; https://doi.org/10.3390/drones9080584 - 18 Aug 2025
Viewed by 517
Abstract
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE [...] Read more.
The main purpose of this paper is to explore the benefits of combining two radio interfaces onboard an unmanned aerial vehicle (UAV) to communicate with a ground control station (GCS) and other UAVs inside a swarm. The goals are to use the IEEE 802.11ah standard (Wi-Fi HaLow) combined with the IEEE 802.11ax specification (Wi-Fi 6/6E) to enable real-time video transmission from UAVs to the GCS. While airport runway inspection serves as the proof-of-concept use case, the proposed multi-hop architectures apply to other medium-range UAV operations (i.e., a few kilometers) requiring real-time video transmission, such as natural disaster relief and agricultural monitoring. Several scenarios in which a UAV swarm performs infrastructure inspection are emulated. During the missions, UAVs have to send real-time video to the GCS through a multi-hop network when some damage in the infrastructure is found. The different scenarios are studied by means of emulation. Emulated scenarios are defined using different network architectures and radio technologies. Once the emulations finish, different performance metrics related to time, energy and the multi-hop video transmission network are analyzed. The capacity of a multi-hop network is a limiting factor for the transmission of high-quality video. As a first contribution, an expression to find this capacity from distances between UAVs in the emulated scenario is found using the NS-3 simulator. Then, this expression is applied in the algorithms in charge of composing the multi-hop network to offer on-demand quality video. However, the main contribution of this work lies in the development of efficient mechanisms for exchanging control information between UAVs and the GCS, and for forming a multi-hop network to transmit video. Full article
Show Figures

Figure 1

Back to TopTop