Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Kähler–Einstein metrics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 265 KB  
Article
Pair of Associated η-Ricci–Bourguignon Almost Solitons with Vertical Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2025, 13(11), 1863; https://doi.org/10.3390/math13111863 - 3 Jun 2025
Cited by 1 | Viewed by 474
Abstract
The manifolds studied are almost contact complex Riemannian manifolds, known also as almost contact B-metric manifolds. They are equipped with a pair of pseudo-Riemannian metrics that are mutually associated to each other using an almost contact structure. Furthermore, the structural endomorphism acts as [...] Read more.
The manifolds studied are almost contact complex Riemannian manifolds, known also as almost contact B-metric manifolds. They are equipped with a pair of pseudo-Riemannian metrics that are mutually associated to each other using an almost contact structure. Furthermore, the structural endomorphism acts as an anti-isometry for these metrics, called B-metrics, if its action is restricted to the contact distribution of the manifold. In this paper, some curvature properties of a special class of these manifolds, called Sasaki-like, are studied. Such a manifold is defined by the condition that its complex cone is a holomorphic complex Riemannian manifold (also called a Kähler–Norden manifold). Each of the two B-metrics on the considered manifold is specialized here as an η-Ricci–Bourguignon almost soliton, where η is the contact form, i.e., has an additional curvature property such that the metric is a self-similar solution of a special intrinsic geometric flow. Almost solitons are generalizations of solitons because their defining condition uses functions rather than constants as coefficients. The introduced (almost) solitons are a generalization of some well-known (almost) solitons (such as those of Ricci, Schouten, and Einstein). The soliton potential is chosen to be collinear with the Reeb vector field and is therefore called vertical. The special case of the soliton potential being solenoidal (i.e., divergence-free) with respect to each of the B-metrics is also considered. The resulting manifolds equipped with the pair of associated η-Ricci–Bourguignon almost solitons are characterized geometrically. An example of arbitrary dimension is constructed and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Analysis on Differentiable Manifolds)
15 pages, 325 KB  
Article
η-Ricci Solitons on Weak β-Kenmotsu f-Manifolds
by Vladimir Rovenski
Mathematics 2025, 13(11), 1734; https://doi.org/10.3390/math13111734 - 24 May 2025
Viewed by 317
Abstract
Recent interest among geometers in f-structures of K. Yano is due to the study of topology and dynamics of contact foliations, which generalize the flow of the Reeb vector field on contact manifolds to higher dimensions. Weak metric structures introduced by the [...] Read more.
Recent interest among geometers in f-structures of K. Yano is due to the study of topology and dynamics of contact foliations, which generalize the flow of the Reeb vector field on contact manifolds to higher dimensions. Weak metric structures introduced by the author and R. Wolak as a generalization of Hermitian and Kähler structures, as well as f-structures, allow for a fresh perspective on the classical theory. In this paper, we study a new f-structure of this kind, called the weak β-Kenmotsu f-structure, as a generalization of K. Kenmotsu’s concept. We prove that a weak β-Kenmotsu f-manifold is a locally twisted product of the Euclidean space and a weak Kähler manifold. Our main results show that such manifolds with β=const and equipped with an η-Ricci soliton structure whose potential vector field satisfies certain conditions are η-Einstein manifolds of constant scalar curvature. Full article
(This article belongs to the Special Issue Differential Geometric Structures and Their Applications)
28 pages, 407 KB  
Article
Continuity Equation of Transverse Kähler Metrics on Sasakian Manifolds
by Yushuang Fan and Tao Zheng
Mathematics 2024, 12(19), 3132; https://doi.org/10.3390/math12193132 - 7 Oct 2024
Viewed by 975
Abstract
We introduce the continuity equation of transverse Kähler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to [...] Read more.
We introduce the continuity equation of transverse Kähler metrics on Sasakian manifolds and establish its interval of maximal existence. When the first basic Chern class is null (resp. negative), we prove that the solution of the (resp. normalized) continuity equation converges smoothly to the unique η-Einstein metric in the basic Bott–Chern cohomological class of the initial transverse Kähler metric (resp. first basic Chern class). These results are the transverse version of the continuity equation of the Kähler metrics studied by La Nave and Tian, and also counterparts of the Sasaki–Ricci flow studied by Smoczyk, Wang, and Zhang. Full article
(This article belongs to the Special Issue Complex Analysis and Geometric Function Theory, 2nd Edition)
9 pages, 261 KB  
Article
Ricci–Bourguignon Almost Solitons with Special Potential on Sasaki-like Almost Contact Complex Riemannian Manifolds
by Mancho Manev
Mathematics 2024, 12(13), 2100; https://doi.org/10.3390/math12132100 - 4 Jul 2024
Cited by 3 | Viewed by 1113
Abstract
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with a pair of pseudo-Riemannian metrics that are mutually associated with each other using the tensor structure. Here, we consider a special class of these manifolds, namely those of [...] Read more.
Almost contact complex Riemannian manifolds, also known as almost contact B-metric manifolds, are equipped with a pair of pseudo-Riemannian metrics that are mutually associated with each other using the tensor structure. Here, we consider a special class of these manifolds, namely those of the Sasaki-like type. They have an interesting geometric interpretation: the complex cone of such a manifold is a holomorphic complex Riemannian manifold (also called a Kähler–Norden manifold). The basic metric on the considered manifold is specialized here as a soliton, i.e., has an additional curvature property such that the metric is a self-similar solution to an intrinsic geometric flow. Almost solitons are more general objects than solitons because they use functions rather than constants as coefficients in the defining condition. A β-Ricci–Bourguignon-like almost soliton (β is a real constant) is defined using the pair of metrics. The introduced soliton is a generalization of some well-known (almost) solitons (such as those of Ricci, Schouten, and Einstein) which, in principle, arise from a single metric rather than a pair of metrics. The soliton potential is chosen to be pointwise collinear to the Reeb vector field, or the Lie derivative of any B-metric along the potential to be the same metric multiplied by a function. The resulting manifolds equipped with the introduced almost solitons are characterized geometrically. Suitable examples for both types of almost solitons are constructed, and the properties obtained in the theoretical part are confirmed. Full article
(This article belongs to the Special Issue Recent Studies in Differential Geometry and Its Applications)
11 pages, 267 KB  
Article
On Bochner Flat Kähler B-Manifolds
by Cornelia-Livia Bejan, Galia Nakova and Adara M. Blaga
Axioms 2023, 12(4), 336; https://doi.org/10.3390/axioms12040336 - 30 Mar 2023
Cited by 2 | Viewed by 1985
Abstract
We obtain on a Kähler B-manifold (i.e., a Kähler manifold with a Norden metric) some corresponding results from the Kählerian and para-Kählerian context concerning the Bochner curvature. We prove that such a manifold is of constant totally real sectional curvatures if and only [...] Read more.
We obtain on a Kähler B-manifold (i.e., a Kähler manifold with a Norden metric) some corresponding results from the Kählerian and para-Kählerian context concerning the Bochner curvature. We prove that such a manifold is of constant totally real sectional curvatures if and only if it is a holomorphic Einstein, Bochner flat manifold. Moreover, we provide the necessary and sufficient conditions for a gradient Ricci soliton or a holomorphic η-Einstein Kähler manifold with a Norden metric to be Bochner flat. Finally, we show that a Kähler B-manifold is of quasi-constant totally real sectional curvatures if and only if it is a holomorphic η-Einstein, Bochner flat manifold. Full article
(This article belongs to the Special Issue Differential Geometry and Its Application)
15 pages, 317 KB  
Article
E-Connections on the ε-Anti-Kähler Manifolds
by Zhizhi Chen, Yanlin Li, Aydin Gezer, Erkan Karakas and Cagri Karaman
Symmetry 2022, 14(9), 1899; https://doi.org/10.3390/sym14091899 - 11 Sep 2022
Viewed by 1614
Abstract
The paper undertakes certain special forms of the quarter symmetric metric and non-metric connections on an ε-anti-Kähler manifold. Firstly, we deduce the relation between the Riemannian connection and the special forms of the quarter symmetric metric and non-metric connections. Then, we present [...] Read more.
The paper undertakes certain special forms of the quarter symmetric metric and non-metric connections on an ε-anti-Kähler manifold. Firstly, we deduce the relation between the Riemannian connection and the special forms of the quarter symmetric metric and non-metric connections. Then, we present some results concerning the torsion tensors of these connections. In addition, we find the forms of the curvature tensor, the Ricci curvature tensor and scalar curvature of such connections and we search the conditions for the ε-anti-Kähler manifold to be an Einstein space with respect to these connections. Finally, we study U(Ric)-vector fields with respect to these connections and give some results related to them. Full article
(This article belongs to the Section Mathematics)
15 pages, 369 KB  
Article
Kähler–Einstein Metrics on Smooth Fano Symmetric Varieties with Picard Number One
by Jae-Hyouk Lee, Kyeong-Dong Park and Sungmin Yoo
Mathematics 2021, 9(1), 102; https://doi.org/10.3390/math9010102 - 5 Jan 2021
Cited by 5 | Viewed by 7341
Abstract
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano [...] Read more.
Symmetric varieties are normal equivarient open embeddings of symmetric homogeneous spaces, and they are interesting examples of spherical varieties. We prove that all smooth Fano symmetric varieties with Picard number one admit Kähler–Einstein metrics by using a combinatorial criterion for K-stability of Fano spherical varieties obtained by Delcroix. For this purpose, we present their algebraic moment polytopes and compute the barycenter of each moment polytope with respect to the Duistermaat–Heckman measure. Full article
(This article belongs to the Section B: Geometry and Topology)
Show Figures

Figure 1

9 pages, 257 KB  
Article
Type I Almost-Homogeneous Manifolds of Cohomogeneity One—IV
by Zhuang-Dan Daniel Guan, Pilar Orellana and Anthony Van
Axioms 2019, 8(1), 2; https://doi.org/10.3390/axioms8010002 - 25 Dec 2018
Viewed by 4899
Abstract
This paper is one of a series in which we generalize our earlier results on the equivalence of existence of Calabi extremal metrics to the geodesic stability for any type I compact complex almost homogeneous manifolds of cohomogeneity one. In this paper, we [...] Read more.
This paper is one of a series in which we generalize our earlier results on the equivalence of existence of Calabi extremal metrics to the geodesic stability for any type I compact complex almost homogeneous manifolds of cohomogeneity one. In this paper, we actually carry all the earlier results to the type I cases. In Part II, we obtained a substantial amount of new Kähler–Einstein manifolds as well as Fano manifolds without Kähler–Einstein metrics. In particular, by applying Theorem 15 therein, we obtained complete results in the Theorems 3 and 4 in that paper. However, we only have partial results in Theorem 5. In this note, we provide a report of recent progress on the Fano manifolds N n , m when n > 15 and N n , m when n > 4 . We provide two pictures for these two classes of manifolds. See Theorems 1 and 2 in the last section. Moreover, we present two conjectures. Once we solve these two conjectures, the question for these two classes of manifolds will be completely solved. By applying our results to the canonical circle bundles, we also obtain Sasakian manifolds with or without Sasakian–Einstein metrics. These also provide open Calabi–Yau manifolds. Full article
(This article belongs to the Special Issue Applications of Differential Geometry)
11 pages, 253 KB  
Article
A New Proof of a Conjecture on Nonpositive Ricci Curved Compact Kähler–Einstein Surfaces
by Zhuang-Dan Daniel Guan
Mathematics 2018, 6(2), 21; https://doi.org/10.3390/math6020021 - 7 Feb 2018
Viewed by 4561
Abstract
In an earlier paper, we gave a proof of the conjecture of the pinching of the bisectional curvature mentioned in those two papers of Hong et al. of 1988 and 2011. Moreover, we proved that any compact Kähler–Einstein surface M is a quotient [...] Read more.
In an earlier paper, we gave a proof of the conjecture of the pinching of the bisectional curvature mentioned in those two papers of Hong et al. of 1988 and 2011. Moreover, we proved that any compact Kähler–Einstein surface M is a quotient of the complex two-dimensional unit ball or the complex two-dimensional plane if (1) M has a nonpositive Einstein constant, and (2) at each point, the average holomorphic sectional curvature is closer to the minimal than to the maximal. Following Siu and Yang, we used a minimal holomorphic sectional curvature direction argument, which made it easier for the experts in this direction to understand our proof. On this note, we use a maximal holomorphic sectional curvature direction argument, which is shorter and easier for the readers who are new in this direction. Full article
(This article belongs to the Special Issue Differential Geometry)
Back to TopTop