Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = LCAO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 27535 KB  
Article
A Comparative Study of A2SiF6 (A = Cs, K) Phosphor Host Matrices: Linear Combination of Atomic Orbital Hybrid Density Functional Theory Calculations
by Leonid L. Rusevich, Mikhail G. Brik, Denis Gryaznov, Alok M. Srivastava, Ilya D. Chervyakov, Guntars Zvejnieks, Dmitry Bocharov and Eugene A. Kotomin
Materials 2025, 18(9), 2025; https://doi.org/10.3390/ma18092025 - 29 Apr 2025
Viewed by 870
Abstract
Cesium hexafluorosilicate (Cs2SiF6, CSF) and potassium hexafluorosilicate (K2SiF6, KSF) compounds are suitable hosts for luminescent impurities. In this work, the results of first-principle calculations of the basic properties of both these compounds are discussed and [...] Read more.
Cesium hexafluorosilicate (Cs2SiF6, CSF) and potassium hexafluorosilicate (K2SiF6, KSF) compounds are suitable hosts for luminescent impurities. In this work, the results of first-principle calculations of the basic properties of both these compounds are discussed and compared with the available experimental and theoretical data. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) method of the density functional theory (DFT) and the advanced hybrid DFT-HF exchange-correlation B1WC functional. A comparative study of the structural, electronic, and elastic properties of the two materials is presented, along with a study of the dependence of properties on external pressure in the range of 0–20 GPa. In particular, the electronic properties with an emphasis on the effective atomic charges (by means of Mulliken analysis) and the chemical bonding properties (by means of crystal orbital overlap population (COOP) analysis) were addressed, with regards to the pressure effects. The structure of the valence bands at 0 and 20 GPa was compared. The vibrational properties of CSF and KSF were calculated, including the simulation of the one-phonon IR and Raman spectra. The calculated Raman spectra exhibit excellent agreement with the experimental ones. The pressure dependences of sound speeds and the Debye temperature are evaluated. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

31 pages, 10573 KB  
Article
Assessing Cu3BiS3 for Thin-Film Photovoltaics: A Systematic DFT Study Comparing LCAO and PAW Across Multiple Functionals
by Carlos O. Amorim, Sivabalan M. Sivasankar and António F. da Cunha
Materials 2025, 18(6), 1213; https://doi.org/10.3390/ma18061213 - 8 Mar 2025
Viewed by 1597
Abstract
Cu3BiS3 (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence [...] Read more.
Cu3BiS3 (CBS) has emerged as a promising earth-abundant absorber for thin-film photovoltaics, offering a sustainable alternative to conventional technologies. However, ab initio studies on its optoelectronic properties remain scarce and often yield contradictory results. This study systematically examines the influence of two density functional theory (DFT) methodologies, linear combination of atomic orbitals (LCAO) and projector augmented wave (PAW), on the structural and electronic properties of CBS, aiming to establish a reliable computational framework for future research. With this in mind, we also assessed the impact of a wide range of exchange-correlation (XC) functionals within both methods, including 6 from the local density approximation (LDA) family (HL, PW, PZ, RPA, Wigner, XA), 10 from the generalized gradient approximation (GGA) family (BLYP, BP86, BPW91, GAM, KT2, PBE, PBEsol, PW91, RPBE, XLYP), 2 meta-GGA functionals (SCAN, R2SCAN), and the hybrid HSE06 functional. Both LCAO and PAW consistently predict an indirect bandgap for CBS across all XC functionals, aligning with most previous DFT studies but contradicting experimental reports of a direct transition. The LDA and meta-GGA functionals systematically underestimated the CBS bandgap (<1 eV), with further reductions upon structural relaxation. GGA functionals performed better, with BLYP and XLYP yielding the most experimentally consistent results. The hybrid HSE06 functional substantially overestimated the bandgap (1.9 eV), with minimal changes after relaxation. The calculated hole and electron effective masses reveal strong anisotropy along the X, Y, and Z crystallographic directions. Additionally, CBS exhibits an intrinsic p-type nature, as the Fermi level consistently lies closer to the valence band maximum across all methods and functionals. However, the PAW method generally predicted more accurate lattice parameters than LCAO; the best agreement with experimental values was achieved using the PW91 (1.2% deviation) and HSE06 (0.9% deviation) functionals within LCAO. Based on these findings, we recommend the PW91 functional with LCAO for structural optimizations in large supercell studies of CBS dopants and/or defects and BLYP/XLYP for electronic properties. Full article
Show Figures

Figure 1

17 pages, 1208 KB  
Article
First-Principles Linear Combination of Atomic Orbitals Calculations of K2SiF6 Crystal: Structural, Electronic, Elastic, Vibrational and Dielectric Properties
by Leonid L. Rusevich, Mikhail G. Brik, Denis Gryaznov, Alok M. Srivastava, Ilya Chervyakov, Guntars Zvejnieks, Dmitry Bocharov and Eugene A. Kotomin
Materials 2024, 17(19), 4865; https://doi.org/10.3390/ma17194865 - 2 Oct 2024
Cited by 5 | Viewed by 1515
Abstract
The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (K2SiF6; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn4+ [...] Read more.
The results of first-principles calculations of the structural, electronic, elastic, vibrational, dielectric and optical properties, as well as the Raman and infrared (IR) spectra, of potassium hexafluorosilicate (K2SiF6; KSF) crystal are discussed. KSF doped with manganese atoms (KSF:Mn4+) is known for its ability to function as a phosphor in white LED applications due to the efficient red emission from Mn⁴⁺ activator ions. The simulations were performed using the CRYSTAL23 computer code within the linear combination of atomic orbitals (LCAO) approximation of the density functional theory (DFT). For the study of KSF, we have applied and compared several DFT functionals (with emphasis on hybrid functionals) in combination with Gaussian-type basis sets. In order to determine the optimal combination for computation, two types of basis sets and four different functionals (three advanced hybrid—B3LYP, B1WC, and PBE0—and one LDA functional) were used, and the obtained results were compared with available experimental data. For the selected basis set and functional, the above-mentioned properties of KSF were calculated. In particular, the B1WC functional provides us with a band gap of 9.73 eV. The dependencies of structural, electronic and elastic parameters, as well as the Debye temperature, on external pressure (0–20 GPa) were also evaluated and compared with previous calculations. A comprehensive analysis of vibrational properties was performed for the first time, and the influence of isotopic substitution on the vibrational frequencies was analyzed. IR and Raman spectra were simulated, and the calculated Raman spectrum is in excellent agreement with the experimental one. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

18 pages, 402 KB  
Article
A Visual Representation for Accurate Local Basis Set Construction and Optimization: A Case Study of SrTiO3 with Hybrid DFT Functionals
by Guntars Zvejnieks, Leonid L. Rusevich, Eugene Heifets, Eugene Kotomin and Denis Gryaznov
Crystals 2024, 14(7), 671; https://doi.org/10.3390/cryst14070671 - 22 Jul 2024
Cited by 1 | Viewed by 1327
Abstract
The linear combination of atomic orbitals (LCAO) method is advantageous for calculating important bulk and surface properties of crystals and defects in/on them. Compared to plane wave calculations and contrary to common assumptions, hybrid density functional theory (DFT) functionals are actually less costly [...] Read more.
The linear combination of atomic orbitals (LCAO) method is advantageous for calculating important bulk and surface properties of crystals and defects in/on them. Compared to plane wave calculations and contrary to common assumptions, hybrid density functional theory (DFT) functionals are actually less costly and easier to implement in LCAO codes. However, choosing the proper basis set (BS) for the LCAO calculations representing Guassian-type functions is crucial, as the results depend heavily on its quality. In this study, we introduce a new basis set (BS) visual representation, which helps us (1) analyze the collective behavior of individual atoms’ shell exponents (s, p, and d), (2) better compare different BSs, (3) identify atom-type invariant relationships, and (4) suggest a robust method for building a local all-electron BS (denoted as BS1) from scratch for each atom type. To compare our BS1 with the others existing in the literature, we calculate the basic bulk properties of SrTiO3 (STO) in cubic and tetragonal phases using several hybrid DFT functionals (B3LYP, PBE0, and HSE06). After adjusting the exact Hartree–Fock (HF) exchange of PBEx, HSEx, and the state-of-the-art meta-GGA hybrid r2SCANx functionals, we find the r2SCAN15 and HSE27 for BS1, with the amount of exact HF exchange of 0.15 and 0.27, respectively, perform equally well for reproducing several most relevant STO properties. The proposed robust BS construction scheme has the advantage that all parameters of the obtained BS can be reoptimized for each new material, thus increasing the quality of DFT calculation predictions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 1153 KB  
Article
Structure of Polaronic Centers in Proton-Intercalated AWO4 Scheelite-Type Tungstates
by Georgijs Bakradze, Edmund Welter and Alexei Kuzmin
Materials 2024, 17(13), 3071; https://doi.org/10.3390/ma17133071 - 22 Jun 2024
Viewed by 1820
Abstract
The studies of polaronic centers in a homologous series of scheelite-type compounds AWO4 (A = Ca, Sr, Ba) were performed using the W L3-edge and Sr K-edge X-ray absorption spectroscopy combined with the reverse Monte Carlo simulations, X-ray [...] Read more.
The studies of polaronic centers in a homologous series of scheelite-type compounds AWO4 (A = Ca, Sr, Ba) were performed using the W L3-edge and Sr K-edge X-ray absorption spectroscopy combined with the reverse Monte Carlo simulations, X-ray photoelectron spectroscopy (XPS), and first-principles calculations. Protonated scheelites HxAWO4 were produced using acid electrolytes in a one-step route at ambient conditions. The underlying mechanism behind this phenomenon can be ascribed to the intercalation of H+ into the crystal structure of tungstate, effectively resulting in the reduction of W6+ to W5+, i.e., the formation of polaronic centers, and giving rise to a characteristic dark blue-purple color. The emergence of the W5+ was confirmed by XPS experiments. The relaxation of the local atomic structure around the W5+ polaronic center was determined from the analysis of the extended X-ray absorption fine structures using the reverse Monte Carlo method. The results obtained suggest the displacement of the W5+ ions from the center of [W5+O4] tetrahedra in the structure of AWO4 scheelite-type tungstates. This finding was also supported by the results of the first-principles calculations. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Graphical abstract

15 pages, 3894 KB  
Article
Electronic Structure of Mg-, Si-, and Zn-Doped SnO2 Nanowires: Predictions from First Principles
by Alexander Platonenko, Sergei Piskunov, Thomas C.-K. Yang, Jurga Juodkazyte, Inta Isakoviča, Anatoli I. Popov, Diana Junisbekova, Zein Baimukhanov and Alma Dauletbekova
Materials 2024, 17(10), 2193; https://doi.org/10.3390/ma17102193 - 7 May 2024
Viewed by 1951
Abstract
We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO2 nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with [...] Read more.
We investigated the electronic structure of Mg-, Si-, and Zn-doped four-faceted [001]- and [110]-oriented SnO2 nanowires using first-principles calculations based on the linear combination of atomic orbitals (LCAO) method. This approach, employing atomic-centered Gaussian-type functions as a basis set, was combined with hybrid density functional theory (DFT). Our results show qualitative agreement in predicting the formation of stable point defects due to atom substitutions on the surface of the SnO2 nanowire. Doping induces substantial atomic relaxation in the nanowires, changes in the covalency of the dopant–oxygen bond, and additional charge redistribution between the dopant and nanowire. Furthermore, our calculations reveal a narrowing of the band gap resulting from the emergence of midgap states induced by the incorporated defects. This study provides insights into the altered electronic properties caused by Mg, Si, and Zn doping, contributing to the further design of SnO2 nanowires for advanced electronic, optoelectronic, photovoltaic, and photocatalytic applications. Full article
Show Figures

Figure 1

20 pages, 3751 KB  
Article
Molecular Mechanism of the Piezoelectric Response in the β-Phase PVDF Crystals Interpreted by Periodic Boundary Conditions DFT Calculations
by Gianluca Serra, Alessia Arrigoni, Mirella Del Zoppo, Chiara Castiglioni and Matteo Tommasini
Materials 2023, 16(17), 6004; https://doi.org/10.3390/ma16176004 - 31 Aug 2023
Cited by 10 | Viewed by 2341
Abstract
A theoretical approach based on Periodic Boundary Conditions (PBC) and a Linear Combination of Atomic Orbitals (LCAO) in the framework of the density functional theory (DFT) is used to investigate the molecular mechanism that rules the piezoelectric behavior of poly(vinylidene fluoride) (PVDF) polymer [...] Read more.
A theoretical approach based on Periodic Boundary Conditions (PBC) and a Linear Combination of Atomic Orbitals (LCAO) in the framework of the density functional theory (DFT) is used to investigate the molecular mechanism that rules the piezoelectric behavior of poly(vinylidene fluoride) (PVDF) polymer in the crystalline β-phase. We present several computational tests highlighting the peculiar electrostatic potential energy landscape the polymer chains feel when they change their orientation by a rigid rotation in the lattice cell. We demonstrate that a rotation of the permanent dipole through chain rotation has a rather low energy cost and leads to a lattice relaxation. This justifies the macroscopic strain observed when the material is subjected to an electric field. Moreover, we investigate the effect on the molecular geometry of the expansion of the lattice parameters in the (a, b) plane, proving that the rotation of the dipole can take place spontaneously under mechanical deformation. By band deconvolution of the IR and Raman spectra of a PVDF film with a high content of β-phase, we provide the experimental phonon wavenumbers and relative band intensities, which we compare against the predictions from DFT calculations. This analysis shows the reliability of the LCAO approach, as implemented in the CRYSTAL software, for calculating the vibrational spectra. Finally, we investigate how the IR/Raman spectra evolve as a function of inter-chain distance, moving towards the isolated chain limit and to the limit of a single crystal slab. The results show the relevance of the inter-molecular interactions on the vibrational dynamics and on the electro-optical features ruling the intensity pattern of the vibrational spectra. Full article
Show Figures

Graphical abstract

21 pages, 1076 KB  
Article
Continuum Electronic States: The Tiresia Code
by Piero Decleva, Mauro Stener and Daniele Toffoli
Molecules 2022, 27(6), 2026; https://doi.org/10.3390/molecules27062026 - 21 Mar 2022
Cited by 14 | Viewed by 2939
Abstract
A multicenter (LCAO) B-spline basis is described in detail, and its capabilities concerning affording convergent solutions for electronic continuum states and wavepacket propagation are presented. It forms the core of the Tiresia code, which implements static-DFT and TDDFT hamiltonians, as well as single [...] Read more.
A multicenter (LCAO) B-spline basis is described in detail, and its capabilities concerning affording convergent solutions for electronic continuum states and wavepacket propagation are presented. It forms the core of the Tiresia code, which implements static-DFT and TDDFT hamiltonians, as well as single channel Dyson-DFT and Dyson-TDDFT descriptions to include correlation in the bound states. Together they afford accurate and computationally efficient descriptions of photoionization properties of complex systems, both in the single photon and strong field environments. A number of examples are provided. Full article
(This article belongs to the Special Issue Molecular Quantum Dynamics Beyond Bound States)
Show Figures

Figure 1

11 pages, 3554 KB  
Article
The Influencing Factors for Volume Stability of Ladle Slag
by Tung-Hsuan Lu, Ying-Liang Chen, Hong-Paul Wang and Juu-En Chang
Processes 2022, 10(1), 92; https://doi.org/10.3390/pr10010092 - 3 Jan 2022
Cited by 6 | Viewed by 2379
Abstract
The purpose of this study was to investigate the mechanism causing the unsoundness of ladle slag. Calcination temperature may have an impact on the level of reactivity of f-CaO. When CaO was produced at a higher temperature, the reactivity of CaO was lower. [...] Read more.
The purpose of this study was to investigate the mechanism causing the unsoundness of ladle slag. Calcination temperature may have an impact on the level of reactivity of f-CaO. When CaO was produced at a higher temperature, the reactivity of CaO was lower. For example, dead burnt CaO (DCaO) was produced at higher temperatures than light burnt CaO (LCaO); therefore, DCaO had less reactivity than LCaO. In a hydration test, DCaO (1500 °C) showed 62 times lower reactivity than LCaO (900 °C), which meant that DCaO would result in the delay of hydration of CaO easily. Additionally, DCaO would cause unsoundness more easily than LCaO when adding the same number of cementitious materials. For this reason, using ASTM C114-18 (Standard Test Methods for Chemical Analysis of Hydraulic Cement) to quantify DCaO content may underestimate DCaO content by up to 20%. Conversely, this method was more suitable for f-CaO since it had high reactivity. Moreover, this study demonstrated that ladle slag would cause unsoundness when added into the cementitious material because it was produced from a higher temperature process (over 1500 °C), which generates the DCaO. Therefore, when reusing ladle slag, the problem of low reactivity of DCaO should be considered. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design)
Show Figures

Figure 1

28 pages, 556 KB  
Article
How to Calculate Condensed Matter Electronic Structure Based on Multi-Electron Atom Semi-Classical Model
by Levan Chkhartishvili
Condens. Matter 2021, 6(4), 46; https://doi.org/10.3390/condmat6040046 - 25 Nov 2021
Cited by 2 | Viewed by 3759
Abstract
Atoms are proved to be semi-classical electronic systems in the sense of closeness of their exact quantum electron energy spectrum with that calculated within semi-classical approximation. Introduced semi-classical model of atom represents the wave functions of bounded in atom electrons in form of [...] Read more.
Atoms are proved to be semi-classical electronic systems in the sense of closeness of their exact quantum electron energy spectrum with that calculated within semi-classical approximation. Introduced semi-classical model of atom represents the wave functions of bounded in atom electrons in form of hydrogen-like atomic orbitals with explicitly defined effective charge numbers. The hydrogen-like electron orbitals of constituting condensed matter atoms are used to calculate the matrix elements of the secular equation determining the condensed matter electronic structure in the linear-combination-of-atomic-orbitals (LCAO) approach. Preliminary test calculations are conducted for boron B atom and diboron B2 molecule electron systems. Full article
Show Figures

Figure 1

10 pages, 1720 KB  
Article
Ground State Properties of the Wide Band Gap Semiconductor Beryllium Sulfide (BeS)
by Blaise A. Ayirizia, Janee’ S. Brumfield, Yuriy Malozovsky and Diola Bagayoko
Materials 2021, 14(20), 6128; https://doi.org/10.3390/ma14206128 - 15 Oct 2021
Cited by 2 | Viewed by 2349
Abstract
We report the results from self-consistent calculations of electronic, transport, and bulk properties of beryllium sulfide (BeS) in the zinc-blende phase, and employed an ab-initio local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We obtained the ground state [...] Read more.
We report the results from self-consistent calculations of electronic, transport, and bulk properties of beryllium sulfide (BeS) in the zinc-blende phase, and employed an ab-initio local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). We obtained the ground state properties of zb-BeS with the Bagayoko, Zhao, and Williams (BZW) computational method, as enhanced by Ekuma and Franklin (BZW-EF). Our findings include the electronic energy bands, the total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the equilibrium lattice constant, and the bulk modulus. The calculated band structure clearly shows that zb-BeS has an indirect energy band gap of 5.436 eV, from Γ to a point between Γ and X, for an experimental lattice constant of 4.863 Å. This is in excellent agreement with the experiment, unlike the findings of more than 15 previous density functional theory (DFT) calculations that did not perform the generalized minimization of the energy functional, required by the second DFT theorem, which is inherent to the implementation of our BZW-EF method. Full article
(This article belongs to the Special Issue Wide-Bandgap Materials and Applications)
Show Figures

Figure 1

13 pages, 3722 KB  
Article
First Principles Calculations of Atomic and Electronic Structure of TiAl3+- and TiAl2+-Doped YAlO3
by Sergei Piskunov, Aleksejs Gopejenko, Vladimir Pankratov, Inta Isakoviča, Chong-Geng Ma, Mikhail G. Brik, Michal Piasecki and Anatoli I. Popov
Materials 2021, 14(19), 5589; https://doi.org/10.3390/ma14195589 - 26 Sep 2021
Cited by 3 | Viewed by 2423
Abstract
In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk [...] Read more.
In this paper, the density functional theory accompanied with linear combination of atomic orbitals (LCAO) method is applied to study the atomic and electronic structure of the Ti3+ and Ti2+ ions substituted for the host Al atom in orthorhombic Pbnm bulk YAlO3 crystals. The disordered crystalline structure of YAlO3 was modelled in a large supercell containing 160 atoms, allowing simulation of a substitutional dopant with a concentration of about 3%. In the case of the Ti2+-doped YAlO3, compensated F-center (oxygen vacancy with two trapped electrons) is inserted close to the Ti to make the unit cell neutral. Changes of the interatomic distances and angles between the chemical bonds in the defect-containing lattices were analyzed and quantified. The positions of various defect levels in the host band gap were determined. Full article
Show Figures

Figure 1

20 pages, 2677 KB  
Article
LCAO Electronic Structure of Nucleic Acid Bases and Other Heterocycles and Transfer Integrals in B-DNA, Including Structural Variability
by Marilena Mantela, Constantinos Simserides and Rosa Di Felice
Materials 2021, 14(17), 4930; https://doi.org/10.3390/ma14174930 - 30 Aug 2021
Cited by 8 | Viewed by 3711
Abstract
To describe the molecular electronic structure of nucleic acid bases and other heterocycles, we employ the Linear Combination of Atomic Orbitals (LCAO) method, considering the molecular wave function as a linear combination of all valence orbitals, i.e., 2s, 2px, 2py [...] Read more.
To describe the molecular electronic structure of nucleic acid bases and other heterocycles, we employ the Linear Combination of Atomic Orbitals (LCAO) method, considering the molecular wave function as a linear combination of all valence orbitals, i.e., 2s, 2px, 2py, 2pz orbitals for C, N, and O atoms and 1s orbital for H atoms. Regarding the diagonal matrix elements (also known as on-site energies), we introduce a novel parameterization. For the non-diagonal matrix elements referring to neighboring atoms, we employ the Slater–Koster two-center interaction transfer integrals. We use Harrison-type expressions with factors slightly modified relative to the original. We compare our LCAO predictions for the ionization and excitation energies of heterocycles with those obtained from Ionization Potential Equation of Motion Coupled Cluster with Singles and Doubles (IP-EOMCCSD)/aug-cc-pVDZ level of theory and Completely Normalized Equation of Motion Coupled Cluster with Singles, Doubles, and non-iterative Triples (CR-EOMCCSD(T))/aug-cc-pVDZ level of theory, respectively, (vertical values), as well as with available experimental data. Similarly, we calculate the transfer integrals between subsequent base pairs, to be used for a Tight-Binding (TB) wire model description of charge transfer and transport along ideal or deformed B-DNA. Taking into account all valence orbitals, we are in the position to treat deflection from the planar geometry, e.g., DNA structural variability, a task impossible for the plane Hückel approach (i.e., using only 2pz orbitals). We show the effects of structural deformations utilizing a 20mer evolved by Molecular Dynamics. Full article
(This article belongs to the Special Issue Computational Modeling and Simulation of Polymers and Biopolymers)
Show Figures

Figure 1

17 pages, 23168 KB  
Article
Topology of the Electron Density and of Its Laplacian from Periodic LCAO Calculations on f-Electron Materials: The Case of Cesium Uranyl Chloride
by Alessandro Cossard, Silvia Casassa, Carlo Gatti, Jacques K. Desmarais and Alessandro Erba
Molecules 2021, 26(14), 4227; https://doi.org/10.3390/molecules26144227 - 12 Jul 2021
Cited by 12 | Viewed by 4653
Abstract
The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of [...] Read more.
The chemistry of f-electrons in lanthanide and actinide materials is yet to be fully rationalized. Quantum-mechanical simulations can provide useful complementary insight to that obtained from experiments. The quantum theory of atoms in molecules and crystals (QTAIMAC), through thorough topological analysis of the electron density (often complemented by that of its Laplacian) constitutes a general and robust theoretical framework to analyze chemical bonding features from a computed wave function. Here, we present the extension of the Topond module (previously limited to work in terms of s-, p- and d-type basis functions only) of the Crystal program to f- and g-type basis functions within the linear combination of atomic orbitals (LCAO) approach. This allows for an effective QTAIMAC analysis of chemical bonding of lanthanide and actinide materials. The new implemented algorithms are applied to the analysis of the spatial distribution of the electron density and its Laplacian of the cesium uranyl chloride, Cs2UO2Cl4, crystal. Discrepancies between the present theoretical description of chemical bonding and that obtained from a previously reconstructed electron density by experimental X-ray diffraction are illustrated and discussed. Full article
Show Figures

Figure 1

9 pages, 1241 KB  
Article
First Principle Investigation of Electronic, Transport, and Bulk Properties of Zinc-Blende Magnesium Sulfide
by Uttam Bhandari, Blaise Awola Ayirizia, Yuriy Malozovsky, Lashounda Franklin and Diola Bagayoko
Electronics 2020, 9(11), 1791; https://doi.org/10.3390/electronics9111791 - 29 Oct 2020
Cited by 8 | Viewed by 3009
Abstract
We have studied electronic, structural, and transport properties of zinc-blende magnesium sulfide (zb-MgS). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) method. Our computational method is able to reach the ground state of a material, [...] Read more.
We have studied electronic, structural, and transport properties of zinc-blende magnesium sulfide (zb-MgS). We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) method. Our computational method is able to reach the ground state of a material, as dictated by the second theorem of density functional theory (DFT). Consequently, our findings have the physical content of DFT and agree with available, corresponding experimental ones. The calculated band gap of zb-MgS, a direct gap equal to 4.43 eV, obtained at the experimental lattice constant of 5.620 Å, completely agrees with the experimental band gap of 4.45 ± 0.2 eV. We also report total (DOS) and partial (pDOS) densities of states, electron and hole effective masses, the equilibrium lattice constant, and the bulk modulus. The calculated pDOS also agree with the experiment for the description of the states at the top and the bottom of the valence and conduction bands, respectively. Full article
Show Figures

Figure 1

Back to TopTop