Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Ligon lintless-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5178 KB  
Article
The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition
by Huidan Tian, Qiaoling Wang, Xingying Yan, Hongju Zhang, Zheng Chen, Caixia Ma, Qian Meng, Fan Xu and Ming Luo
Int. J. Mol. Sci. 2025, 26(3), 1375; https://doi.org/10.3390/ijms26031375 - 6 Feb 2025
Cited by 1 | Viewed by 1050
Abstract
Boosting evidence indicated lipids play important roles in plants. To explore lipid function in cotton fiber development, the lipid composition and content were detected by untargeted and targeted lipidomics. Compared with rapid elongation fibers, the lipid intensity of 16 sub-classes and 56 molecular [...] Read more.
Boosting evidence indicated lipids play important roles in plants. To explore lipid function in cotton fiber development, the lipid composition and content were detected by untargeted and targeted lipidomics. Compared with rapid elongation fibers, the lipid intensity of 16 sub-classes and 56 molecular species decreased, while only 7 sub-classes and 26 molecular species increased in the fibers at the stage of secondary cell wall deposition. Unexpectedly, at the rapid elongation stage, 20 sub-classes and 60 molecular species increased significantly, while only 5 sub-classes and 8 molecular species decreased in the ligon lintless-1 (li-1) mutant compared with its wild-type Texas Maker-1 (TM-1). Particularly, campesteryl, sitosteryl, and total steryl ester increased by 21.8-, 48.7-, and 45.5-fold in the li-1 fibers, respectively. All the molecular species of sphingosine-1-P, phytoceramide-OHFA, and glucosylceramide increased while all sphingosine, phytosphingosine, and glycosyl inositol phospho ceramides decreased in the li-1 fibers. Similarly, the different expression genes between the mutant and wild type were enriched in many pathways involved in the lipid metabolism. Furthermore, the number of lipid droplets also increased in the li-1 leaf and fiber cells when compared with the wild type. These results illuminated that fiber cell elongation being blocked in the li-1 mutant was not due to a lack of lipids, but rather lipid over-accumulation (obesity), which may result from the disruption of sphingolipid and sterol metabolism. This study provides a new perspective for further studying the regulatory mechanisms of fiber development. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 21406 KB  
Article
Surface and Thermal Characterization of Cotton Fibers of Phenotypes Differing in Fiber Length
by Zhongqi He, Sunghyun Nam, David D. Fang, Huai N. Cheng and Jibao He
Polymers 2021, 13(7), 994; https://doi.org/10.3390/polym13070994 - 24 Mar 2021
Cited by 19 | Viewed by 4215
Abstract
Cotton is one of the most important and widely grown crops in the world. Understanding the synthesis mechanism of cotton fiber elongation can provide valuable tools to the cotton industry for improving cotton fiber yield and quality at the molecular level. In this [...] Read more.
Cotton is one of the most important and widely grown crops in the world. Understanding the synthesis mechanism of cotton fiber elongation can provide valuable tools to the cotton industry for improving cotton fiber yield and quality at the molecular level. In this work, the surface and thermal characteristics of cotton fiber samples collected from a wild type (WT) and three mutant lines (Li1, Li2-short, Li2-long, Li2-mix, and liy) were comparatively investigated. Microimaging revealed a general similarity trend of WT ≥ Li2-long ≈ Li2-mix > Li1 > Li2 short ≈ liy with Ca detected on the surface of the last two. Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and thermogravimetric measurements also showed that Li2-short and liy were more similar to each other, and Li2-long and Li2-mix closer to WT while Li1 was quite independent. FT-IR results further demonstrated that wax and amorphous cellulose were co-present in fiber structures during the fiber formation processes. The correlation analysis found that the FT-IR-based maturity parameter was well correlated (p ≤ 0.05) to the onset decomposition temperature and all three weight-loss parameters at onset, peak, and end decomposition stages, suggesting that the maturity degree is a better parameter than crystallinity index (CI) and other FT-IR parameters that reflect the thermal stability of the cotton fiber. In summary, this work demonstrated that genetic mutation altered the surface and thermal characteristics in the same way for Li2-short and liy, but with different mechanisms for the other three mutant cotton fiber samples. Full article
(This article belongs to the Special Issue Polymers and Fibers)
Show Figures

Figure 1

13 pages, 2305 KB  
Article
A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant
by Yuefen Cao, Hui Huang, Yanjun Yu, Huaqin Dai, Huanfeng Hao, Hua Zhang, Yurong Jiang, Mingquan Ding, Feifei Li, Lili Tu, Zhaosheng Kong and Junkang Rong
Int. J. Mol. Sci. 2021, 22(6), 3000; https://doi.org/10.3390/ijms22063000 - 16 Mar 2021
Cited by 7 | Viewed by 2757
Abstract
Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that [...] Read more.
Dynamic remodeling of the actin cytoskeleton plays a central role in the elongation of cotton fibers, which are the most important natural fibers in the global textile industry. Here, a high-resolution mapping approach combined with comparative sequencing and a transgenic method revealed that a G65V substitution in the cotton actin Gh_D04G0865 (GhACT17D in the wild-type) is responsible for the Gossypium hirsutum Ligon lintless-1 (Li1) mutant (GhACT17DM). In the mutant GhACT17DM from Li1 plant, Gly65 is substituted with valine on the lip of the nucleotide-binding domain of GhACT17D, which probably affects the polymerization of F-actin. Over-expression of GhACT17DM, but not GhACT17D, driven by either a CaMV35 promoter or a fiber-specific promoter in cotton produced a Li1-like phenotype. Compared with the wild-type control, actin filaments in Li1 fibers showed higher growth and shrinkage rates, decreased filament skewness and parallelness, and increased filament density. Taken together, our results indicate that the incorporation of GhACT17DM during actin polymerization disrupts the establishment and dynamics of the actin cytoskeleton, resulting in defective fiber elongation and the overall dwarf and twisted phenotype of the Li1 mutant. Full article
(This article belongs to the Special Issue Molecular Genetics and Plant Breeding)
Show Figures

Figure 1

Back to TopTop