Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Longwangmiao Formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1681 KB  
Article
Simulating Water Invasion Dynamics in Fractured Gas Reservoirs
by Yueyang Li, Enli Zhang, Ping Yue, Han Zhao, Zhiwei Xie and Wei Liu
Energies 2024, 17(23), 6055; https://doi.org/10.3390/en17236055 - 2 Dec 2024
Viewed by 844
Abstract
The Longwangmiao Formation gas reservoir in the Moxi block of the Sichuan Basin is a complex carbonate reservoir characterized by a low porosity and permeability, strong heterogeneity, developed natural fractures, and active water bodies. The existence of natural fractures allows water bodies to [...] Read more.
The Longwangmiao Formation gas reservoir in the Moxi block of the Sichuan Basin is a complex carbonate reservoir characterized by a low porosity and permeability, strong heterogeneity, developed natural fractures, and active water bodies. The existence of natural fractures allows water bodies to easily channel along these fractures, resulting in a more complicated mechanism and dynamic law of gas-well water production, which seriously impacts reservoir development. Therefore, a core-based simulation experiment was designed for oil–water two-phase flow. Three main factors influencing the water production of the gas reservoir, namely fracture permeability, fracture penetration, and water volume multiple, were analyzed using the orthogonal test method. The experimental results showed that the influences of the experimental parameters on the recovery factor and average water production can be ranked as water volume multiple > fracture penetration > fracture permeability, with the influence of the water volume multiple being slightly greater than that of the other two parameters. It provides a certain theoretical basis for water control of the gas reservoir. Full article
Show Figures

Figure 1

15 pages, 24596 KB  
Article
Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China
by Xiaochuan Wu, Wei Wang, Lin Zhang, Jinxi Wang, Yuelei Zhang and Ye Zhang
Energies 2024, 17(16), 4045; https://doi.org/10.3390/en17164045 - 15 Aug 2024
Cited by 1 | Viewed by 1355
Abstract
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, [...] Read more.
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, thermal reservoir rock characteristics, and the classification of geothermal resources, remain in need of further study. In this work, the targeted area is surrounded by Sinian–Cambrian carbonate gas fields. An analysis of the deep geothermal prospects was conducted using exploration and development data from the Gaoshiti–Moxi gas fields within the Longwangmiao and Dengying Formations. The results indicate that the Rongchang–Dazu area has relatively high heat flow values and geothermal gradients within the Sichuan Basin, correlating with fault structure and seismic activity. Gas test data confirm that the Longwangmiao Formation in the study area reaches depths of 4000 to 4500 metres and exhibits anomalous pressures and temperatures exceeding 140 °C. Meanwhile, the Dengying Formation of the Sinian system lies at depths of 5000 to 5500 metres, with normal pressure, minimal water production, and temperatures exceeding 150 °C, characterising it as a dry-hot rock resource. Adjacent to western Chongqing, the Gaoshiti area within the Longwangmiao Formation, with an estimated flow rate of 100 kg/s, shows that the dynamic investment payback period is significantly shorter than the estimated 30-year life of a geothermal power plant, indicating strong economic viability. Deep geothermal resource development aids in conserving gas resources and enhancing the energy mix in western Chongqing. Future research should prioritise understanding the links between basement faults, seismic activity, and heat flow dynamics. Full article
Show Figures

Figure 1

Back to TopTop