Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = Lorentz symmetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 305 KB  
Article
The General Property of the Tensor Gravitational Memory Effect in Theories of Gravity: The Linearized Case
by Shaoqi Hou
Symmetry 2025, 17(10), 1703; https://doi.org/10.3390/sym17101703 (registering DOI) - 11 Oct 2025
Viewed by 51
Abstract
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an [...] Read more.
In this work, it is shown that, based on the linear analysis, as long as a theory of gravity is diffeomorphism invariant and possesses the tensor degrees of freedom propagating at a constant, isotropic speed without dispersion, its asymptotic symmetry group of an isolated system contains the (extended/generalized) Bondi–Metzner–Sachs group. These asymptotic symmetries preserve the causal structure of the tensor degrees of freedom. They possess the displacement, spin and center-of-mass memory effects. These effects depend on the asymptotic shear tensor. The displacement memory effect is the vacuum transition and parameterized by a supertranslation transformation. All of these hold even when the Lorentz symmetry is broken by a special timelike direction. Full article
(This article belongs to the Special Issue Symmetry in Gravitational Waves and Astrophysics)
19 pages, 316 KB  
Article
Zero Mass as a Borel Structure
by Rein Saar and Stefan Groote
Symmetry 2025, 17(9), 1464; https://doi.org/10.3390/sym17091464 - 5 Sep 2025
Viewed by 435
Abstract
The Lorentz group Lor1,3=SO0(1,3) has two point fixgroups, namely SO(3) for time-like translations and SO0(1,1)×IR2 for light-like translations. However, [...] Read more.
The Lorentz group Lor1,3=SO0(1,3) has two point fixgroups, namely SO(3) for time-like translations and SO0(1,1)×IR2 for light-like translations. However, for light-like translations, it is reasonable to consider a line fixgroup that leads to the Borel structure of the Lorentz group and provides appropriate helicities for massless particles. Therefore, whether a particle is massless or massive is not so much a physical question but rather a question of the underlying Lie group symmetry. Full article
(This article belongs to the Special Issue The Benefits That Physics Derives from the Concept of Symmetry)
13 pages, 324 KB  
Article
Gauge Symmetry and Radiatively Induced Terms in Dimension-5 Non-Minimal Lorentz-Violating QED
by A. P. B. Scarpelli and A. R. Vieira
Universe 2025, 11(9), 300; https://doi.org/10.3390/universe11090300 - 3 Sep 2025
Viewed by 317
Abstract
In this work, we derive the conditions that ensure gauge invariance of non-minimal dimension-5 Lorentz-violating QED. The two- and three-point functions at one loop are computed. The gauge Ward identities are checked, as well as the conditions, to ensure that the gauge symmetry [...] Read more.
In this work, we derive the conditions that ensure gauge invariance of non-minimal dimension-5 Lorentz-violating QED. The two- and three-point functions at one loop are computed. The gauge Ward identities are checked, as well as the conditions, to ensure that the gauge symmetry of this non-minimal framework is found to be the same of the usual QED. Induced terms are also investigated, and it is shown that the non-minimal Lorentz-violating aF(5)-term of the fermion sector can radiatively induce a non-minimal Lorentz-violating term in the photon sector. Full article
(This article belongs to the Section Field Theory)
Show Figures

Figure 1

13 pages, 289 KB  
Article
Induction of a Landau-Type Quantization in a Background of CPT-Odd Lorentz Symmetry Violation
by R. L. L. Vitória
Symmetry 2025, 17(7), 1070; https://doi.org/10.3390/sym17071070 - 5 Jul 2025
Viewed by 285
Abstract
In this article, we approach a scalar particle in a background characterized by the Lorentz symmetry violation through a non-minimal coupling in the mathematical structure of the Klein–Gordon equation, where the Lorentz symmetry violation is governed by a background vector field. For an [...] Read more.
In this article, we approach a scalar particle in a background characterized by the Lorentz symmetry violation through a non-minimal coupling in the mathematical structure of the Klein–Gordon equation, where the Lorentz symmetry violation is governed by a background vector field. For an electric field configuration and in the search for solutions of bound states, we determine the relativistic energy profile of the system, which is characterized by quantized orbits, that is, a relativistic Landau-type quantization. Then, we particularize our system and analyze it in the presence of a hard-wall potential, from which, we analytically determine its relativistic energy profile in this confining type. Full article
47 pages, 700 KB  
Review
Probes for String-Inspired Foam, Lorentz, and CPT Violations in Astrophysics
by Chengyi Li and Bo-Qiang Ma
Symmetry 2025, 17(6), 974; https://doi.org/10.3390/sym17060974 - 19 Jun 2025
Cited by 1 | Viewed by 1604
Abstract
Lorentz invariance is such a basic principle in fundamental physics that it must be constantly tested and any proposal of its violation and breakdown of CPT symmetry that might characterize some approaches to quantum gravity should be treated with care. In this review, [...] Read more.
Lorentz invariance is such a basic principle in fundamental physics that it must be constantly tested and any proposal of its violation and breakdown of CPT symmetry that might characterize some approaches to quantum gravity should be treated with care. In this review, we examine, among other scenarios, such instances in supercritical (Liouville) string theory, particularly in some brane models for “quantum foam”. Using the phenomenological formalism introduced here, we analyze the observational hints of Lorentz violation in time-of-flight lags of cosmic photons and neutrinos which fit excellently stringy space–time foam scenarios. We further demonstrate how stringent constraints from other astrophysical data, including the recent first detections of multi-TeV events in γ-ray burst 221009A and PeV cosmic photons by the Large High Altitude Air Shower Observatory (LHAASO), are satisfied in this context. Such models thus provide a unified framework for all currently observed phenomenologies of space–time symmetry breaking at Planckian scales. Full article
(This article belongs to the Special Issue Lorentz Invariance Violation and Space–Time Symmetry Breaking)
12 pages, 282 KB  
Article
GUP, Lorentz Invariance (Non)-Violation, and Non-Commutative Geometry
by Michael Bishop, Daniel Hooker, Peter Martin and Douglas Singleton
Symmetry 2025, 17(6), 923; https://doi.org/10.3390/sym17060923 - 10 Jun 2025
Viewed by 455
Abstract
In this work, we formulate a generalized uncertainty principle with both position and momentum operators modified from their canonical forms. We study whether Lorentz symmetry is violated and whether it can be saved with these modifications. The requirement that Lorentz invariance is not [...] Read more.
In this work, we formulate a generalized uncertainty principle with both position and momentum operators modified from their canonical forms. We study whether Lorentz symmetry is violated and whether it can be saved with these modifications. The requirement that Lorentz invariance is not violated places restrictions on the way the position and momentum operators can be modified. We also investigate the connection between general uncertainty principle and non-commutative geometry models, e.g., laying out the connection between area/area operators and angular momentum in both models. Full article
(This article belongs to the Special Issue Nature and Origin of Dark Matter and Dark Energy, 2nd Edition)
57 pages, 2571 KB  
Review
Heavy–Heavy and Heavy–Light Mesons in Cold Nuclear Matter
by J. J. Cobos-Martínez, Guilherme N. Zeminiani and Kazuo Tsushima
Symmetry 2025, 17(5), 787; https://doi.org/10.3390/sym17050787 - 19 May 2025
Viewed by 763
Abstract
We review the in-medium modifications of effective masses (Lorentz scalar potentials or phenomenon of mass shift) of the heavy–heavy and heavy–light mesons in symmetric nuclear matter and their nuclear bound states. We use a combined approach with the quark–meson coupling (QMC) model and [...] Read more.
We review the in-medium modifications of effective masses (Lorentz scalar potentials or phenomenon of mass shift) of the heavy–heavy and heavy–light mesons in symmetric nuclear matter and their nuclear bound states. We use a combined approach with the quark–meson coupling (QMC) model and an effective Lagrangian. As demonstrated by the cases of pionic and kaonic atoms, studies of the meson–nucleus bound state can provide us with important information on chiral symmetry in a dense nuclear medium. In this review, we examine the mesons, K,K,D,D,B,B,η,η,ϕ,ηc,J/ψ,ηb,Υ, and Bc, where our emphasis is on the heavy mesons. In addition, we also present some new results for the Bc-nucleus bound states. Full article
(This article belongs to the Special Issue Chiral Symmetry, and Restoration in Nuclear Dense Matter)
Show Figures

Figure 1

18 pages, 337 KB  
Article
Lagrangian Coupling of Dissipative Electrodynamic Waves with the Thermal Absorption and Emission
by Ferenc Márkus and Katalin Gambár
Symmetry 2024, 16(12), 1559; https://doi.org/10.3390/sym16121559 - 21 Nov 2024
Viewed by 869
Abstract
Electromagnetic wave dissipation is experienced in radiative absorbing-emitting processes and signal transmissions via media. The absorbed wave initiates thermal processes in the conducting medium. Conversely, thermal processes generate electromagnetic waves in the vacuum–material interface region. The two processes do not take place symmetrically, [...] Read more.
Electromagnetic wave dissipation is experienced in radiative absorbing-emitting processes and signal transmissions via media. The absorbed wave initiates thermal processes in the conducting medium. Conversely, thermal processes generate electromagnetic waves in the vacuum–material interface region. The two processes do not take place symmetrically, i.e., the incoming and thermalizing electromagnetic spectrum does not occur in the reverse process. The conservation of energy remains in effect, and the loop process “electromagnetic wave–thermal propagation–electromagnetic wave” is dissipative. In the Lagrangian formalism, we provide a unified description of these two interconnected processes. We point out how it involves the origin of the asymmetry. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2024)
Show Figures

Figure 1

12 pages, 13526 KB  
Article
Constraint of d = 8 Lorentz Invariance Violation with New Experimental Design
by Tao Jin, Jia-Rui Li, Yu-Jie Tan, Pan-Pan Wang, Cheng-Gang Qin and Cheng-Gang Shao
Symmetry 2024, 16(11), 1432; https://doi.org/10.3390/sym16111432 - 28 Oct 2024
Cited by 1 | Viewed by 1875
Abstract
Short-range gravity experiments are more suitable for the testing of high-order Lorentz symmetry breaking effects. In our previous work, we proposed a new experimental design based on precision torsion balance technology to test the Lorentz violation force effect that varies inversely with the [...] Read more.
Short-range gravity experiments are more suitable for the testing of high-order Lorentz symmetry breaking effects. In our previous work, we proposed a new experimental design based on precision torsion balance technology to test the Lorentz violation force effect that varies inversely with the fourth power of distance (corresponding to mass dimension d = 6 term), and the corresponding experiment is currently underway. In this paper, we focus on analyzing the potential of this experimental scheme to test the Lorentz violation force that varies inversely with the sixth power of distance (corresponding to mass dimension d = 8 term). The results show that, compared with the current best limit, the new experimental scheme can improve the constraints on the Lorentz violation coefficients with d = 8 by at least one order of magnitude. Full article
(This article belongs to the Special Issue Lorentz Symmetry and General Relativity)
Show Figures

Figure 1

18 pages, 353 KB  
Article
On the Continuity Equation in Space–Time Algebra: Multivector Waves, Energy–Momentum Vectors, Diffusion, and a Derivation of Maxwell Equations
by Manuel Beato Vásquez and Melvin Arias Polanco
Mathematics 2024, 12(14), 2270; https://doi.org/10.3390/math12142270 - 20 Jul 2024
Viewed by 1260
Abstract
Historically and to date, the continuity equation (C.E.) has served as a consistency criterion for the development of physical theories. In this paper, we study the C.E. employing the mathematical framework of space–time algebra (STA), showing how common equations in mathematical physics can [...] Read more.
Historically and to date, the continuity equation (C.E.) has served as a consistency criterion for the development of physical theories. In this paper, we study the C.E. employing the mathematical framework of space–time algebra (STA), showing how common equations in mathematical physics can be identified and derived from the C.E.’s structure. We show that, in STA, the nabla equation given by the geometric product between the vector derivative operator and a generalized multivector can be identified as a system of scalar and vectorial C.E.—and, thus, another form of the C.E. itself. Associated with this continuity system, decoupling conditions are determined, and a system of wave equations and the generalized analogous quantities to the energy–momentum vectors and the Lorentz force density (and their corresponding C.E.) are constructed. From the symmetry transformations that make the C.E. system’s structure invariant, a system with the structure of Maxwell’s field equations is derived. This indicates that a Maxwellian system can be derived not only from the nabla equation and the generalized continuity system as special cases, but also from the symmetries of the C.E. structure. Upon reduction to well-known simpler quantities, the results found are consistent with the usual STA treatment of electrodynamics and hydrodynamics. The diffusion equation is explored from the continuity system, where it is found that, for decoupled systems with constant or explicitly dependent diffusion coefficients, the absence of external vector sources implies a loss in the diffusion equation structure, transforming it into Helmholtz-like and wave equations. Full article
(This article belongs to the Special Issue Applications of Geometric Algebra)
18 pages, 313 KB  
Article
Partially Nonclassical Method and Conformal Invariance in the Context of the Lie Group Method
by Georgy I. Burde
Symmetry 2024, 16(7), 875; https://doi.org/10.3390/sym16070875 - 10 Jul 2024
Cited by 1 | Viewed by 1317
Abstract
The basic idea of the ‘partially nonclassical method’, developed in the present paper, is to apply the invariance requirement of the Lie group method using not all differential consequences of the invariant surface condition but only part of them. It differs from the [...] Read more.
The basic idea of the ‘partially nonclassical method’, developed in the present paper, is to apply the invariance requirement of the Lie group method using not all differential consequences of the invariant surface condition but only part of them. It differs from the ‘classical’ method, in which the invariant surface condition is not used, and from the ‘nonclassical’ method, in which all the differential consequences are used. It provides additional possibilities for the symmetry analysis of partial differential equations (PDEs), as compared with the ‘classical’ and ‘nonclassical’ methods, in the so-named no-go case when the group generator, associated with one of the independent variables, is identically zero. The method is applied to the flat steady-state boundary layer problem, reduced to an equation for the stream function, and it is found that applying the partially nonclassical method in the no-go case yields new symmetry reductions and new exact solutions of the boundary layer equations. A computationally convenient unified framework for the classical, nonclassical and partially nonclassical methods (λ-formulation) is developed. The issue of conformal invariance in the context of the Lie group method is considered, stemming from the observation that the classical Lie method procedure yields transformations not leaving the differential polynomial of the PDE invariant but modifying it by a conformal factor. The physical contexts, in which that observation could be important, are discussed using the derivation of the Lorentz transformations of special relativity as an example. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Models)
Show Figures

Figure 1

25 pages, 2100 KB  
Article
Special Relativity in Terms of Hyperbolic Functions with Coupled Parameters in 3+1 Dimensions
by Nikolai S. Akintsov, Artem P. Nevecheria, Gennadii F. Kopytov, Yongjie Yang and Tun Cao
Symmetry 2024, 16(3), 357; https://doi.org/10.3390/sym16030357 - 15 Mar 2024
Cited by 8 | Viewed by 2482
Abstract
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton [...] Read more.
This paper presents a method for parameterizing new Lorentz spacetime coordinates based on coupled parameters. The role of symmetry in rapidity in special relativity is explored, and invariance is obtained for new spacetime intervals with respect to the Lorentz transformation. Using the Euler–Hamilton equations, an additional angular rapidity and perpendicular rapidity are obtained, and the Hamiltonian and Lagrangian of a relativistic particle are expanded into rapidity spectra. A so-called passage to the limit is introduced that makes it possible to decompose physical quantities into spectra in terms of elementary functions when explicit decomposition is difficult. New rapidity-dependent Lorentz spacetime coordinates are obtained. The descriptions of particle motion using the old and new Lorentz spacetime coordinates as applied to plane laser pulses are compared in terms of the particle kinetic energy. Based on a classical model of particle motion in the field of a plane monochromatic electromagnetic wave and that of a plane laser pulse, rapidity-dependent spectral decompositions into elementary functions are presented, and the Euler–Hamilton equations are derived as rapidity functions in 3+1 dimensions. The new and old Lorentz spacetime coordinates are compared with the Fermi spacetime coordinates. The proper Lorentz groups SO(1,3) with coupled parameters using the old and new Lorentz spacetime coordinates are also compared. As a special case, the application of Lorentz spacetime coordinates to a relativistic hydrodynamic system with coupled parameters in 1+1 dimensions is demonstrated. Full article
(This article belongs to the Special Issue Lorentz Symmetry and General Relativity)
Show Figures

Figure 1

16 pages, 1031 KB  
Article
Symmetry Breaking and Dynamic Transition in the Negative Mass Term Klein–Gordon Equations
by Ferenc Márkus and Katalin Gambár
Symmetry 2024, 16(2), 144; https://doi.org/10.3390/sym16020144 - 26 Jan 2024
Cited by 3 | Viewed by 1555
Abstract
Through the discussion of three physical processes, we show that the Klein–Gordon equations with a negative mass term describe special dynamics. In the case of two classical disciplines—mechanics and thermodynamics—the Lagrangian-based mathematical description is the same, even though the nature of the investigated [...] Read more.
Through the discussion of three physical processes, we show that the Klein–Gordon equations with a negative mass term describe special dynamics. In the case of two classical disciplines—mechanics and thermodynamics—the Lagrangian-based mathematical description is the same, even though the nature of the investigated processes seems completely different. The unique feature of this type of equation is that it contains wave propagation and dissipative behavior in one framework. The dissipative behavior appears through a repulsive potential. The transition between the two types of dynamics can be specified precisely, and its physical meaning is clear. The success of the two descriptions inspires extension to the case of electrodynamics. We reverse the suggestion here. We create a Klein–Gordon equation with a negative mass term, but first, we modify Maxwell’s equations. The repulsive interaction that appears here results in a charge spike. However, the Coulomb interaction limits this. The charge separation is also associated with the high-speed movement of the charged particle localized in a small space domain. As a result, we arrive at a picture of a fast vibrating phenomenon with an electromagnetism-related Klein–Gordon equation with a negative mass term. The calculated maximal frequency value ω=1.74×1021 1/s. Full article
(This article belongs to the Special Issue Symmetry in Hamiltonian Dynamical Systems)
Show Figures

Figure 1

32 pages, 419 KB  
Article
Spontaneous and Explicit Spacetime Symmetry Breaking in Einstein–Cartan Theory with Background Fields
by Robert Bluhm and Yu Zhi
Symmetry 2024, 16(1), 25; https://doi.org/10.3390/sym16010025 - 24 Dec 2023
Cited by 7 | Viewed by 1813
Abstract
Explicit and spontaneous breaking of spacetime symmetry under diffeomorphisms, local translations, and local Lorentz transformations due to the presence of fixed background fields is examined in Einstein–Cartan theory. In particular, the roles of torsion and violation of local translation invariance are highlighted. The [...] Read more.
Explicit and spontaneous breaking of spacetime symmetry under diffeomorphisms, local translations, and local Lorentz transformations due to the presence of fixed background fields is examined in Einstein–Cartan theory. In particular, the roles of torsion and violation of local translation invariance are highlighted. The nature of the types of background fields that can arise and how they cause spacetime symmetry breaking is discussed. With explicit breaking, potential no-go results are known to exist, which if not evaded lead to inconsistencies between the Bianchi identities, Noether identities, and the equations of motion. These are examined in detail, and the effects of nondynamical backgrounds and explicit breaking on the energy–momentum tensor when torsion is present are discussed as well. Examples illustrating various features of both explicit and spontaneous breaking of local translations are presented and compared to the case of diffeomorphism breaking. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2023)
17 pages, 550 KB  
Article
Spontaneous Emergence of a Causal Time Axis in Euclidean Space from a Gauged Rotational Symmetry Theory
by Michael Luke Walker
Symmetry 2024, 16(1), 4; https://doi.org/10.3390/sym16010004 - 19 Dec 2023
Viewed by 1917
Abstract
We demonstrate the emergence of an effective “time” axis in the ground state of a gauged rotational symmetry theory in four-dimensional Euclidean space. In so doing, we remove the necessity of Wick rotation to Lorentz spacetime, an arbitrary and sometimes ill-defined procedure, especially [...] Read more.
We demonstrate the emergence of an effective “time” axis in the ground state of a gauged rotational symmetry theory in four-dimensional Euclidean space. In so doing, we remove the necessity of Wick rotation to Lorentz spacetime, an arbitrary and sometimes ill-defined procedure, especially for gravity-related theories. We begin by adapting the Cho-Duan-Ge decomposition to the gauge theory of the four-dimensional rotational symmetry group SO(4), where it identifies the maximal Abelian subgroup SO(2)SO(2) in a gauge covariant manner. We then find the one-loop effective theory to have a stable condensate of monopoles corresponding to the reduction of SO(4) symmetry to SO(2)SO(2). The construction of the condensate ensures that the four-dimensional spatial direction of its field strength must coincide with that of this embedding, and that a magnetic potential must be worked against to divert a trajectory away from this direction. Indeed, movement along this direction represents minimal potential energy. We take it to be the time direction. The gauge-dependent nature of the condensate is such that different gauge choices may lead to different time axes and we show on very general grounds that these different coordinate systems must be relatable by transformations of Lorentz form. Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2023)
Show Figures

Figure 1

Back to TopTop