Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Lucknolide A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4162 KB  
Article
Anti-Angiogenic Potential of Marine Streptomyces-Derived Lucknolide A on VEGF/VEGFR2 Signaling in Human Endothelial Cells
by Byeoung-Kyu Choi, Min-Hee Jo, Hee Jae Shin and Sun Joo Park
Molecules 2025, 30(5), 987; https://doi.org/10.3390/molecules30050987 - 20 Feb 2025
Cited by 2 | Viewed by 1081
Abstract
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and [...] Read more.
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.hy926 and HUVEC while exhibiting minimal effects on normal fibroblasts and various tumor cells. LA induced S-phase cell cycle arrest and apoptosis in EA.hy926 cells, increasing apoptotic markers p53, Bax, and p21 and decreasing the anti-apoptotic protein Bcl-2, with these effects being further enhanced under VEGF stimulation. Additionally, LA suppressed VEGFR2 phosphorylation and its downstream signaling pathways, including Akt/mTOR/p70S6K, MEK/ERK, Src, FAK, and p38 MAPK, which are crucial for endothelial survival and angiogenesis. Molecular docking studies revealed that LA binds to both inactive (DFG-out, PDB: 4ASD) and active (DFG-in, PDB: 3B8R) VEGFR2 conformations, with a significantly stronger affinity for the active state (−107.96 kcal/mol) than the inactive state (−33.56 kcal/mol), suggesting its potential as a VEGFR2 kinase inhibitor. Functionally, LA significantly inhibited VEGF-induced endothelial migration, tube formation, and microvessel sprouting in both in vitro and ex vivo rat aortic ring assays. Additionally, LA reduced tumor-associated tube formation induced by human breast tumor cells (MDA-MB-231), indicating its potential to suppress VEGF-dependent tumor angiogenesis. These findings suggest that LA is a promising selective anti-angiogenic agent with potential therapeutic applications in angiogenesis-related diseases such as cancer. Full article
(This article belongs to the Special Issue Bioactive Compounds: Applications and Benefits for Human Health)
Show Figures

Graphical abstract

14 pages, 5122 KB  
Article
A Lucknolide Derivative Induces Mitochondrial ROS-Mediated G2/M Arrest and Apoptotic Cell Death in B16F10 Mouse Melanoma Cells
by Jae Hyeop Lee, Byeoung-Kyu Choi, Minsoo Kim, Hee Jae Shin and Sun Joo Park
Mar. Drugs 2024, 22(12), 533; https://doi.org/10.3390/md22120533 - 28 Nov 2024
Cited by 2 | Viewed by 1650
Abstract
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide [...] Read more.
Melanoma is an aggressive skin cancer with a high risk of cancer-related deaths, and inducing apoptosis in melanoma cells is a promising therapeutic strategy. This study investigates the anti-tumor potential of a novel lucknolide derivative LA-UC as a therapeutic candidate for melanoma. Lucknolide A (LA), a tricyclic ketal-lactone metabolite isolated from marine-derived Streptomyces sp., was chemically modified by introducing a 10-undecenoyl group to synthesize LA-UC. LA-UC preferentially inhibited the proliferation of melanoma cells, including B16F10, while exerting minimal effects on normal melanocytes or other tumor cell types, indicating the selective action of LA-UC against melanoma cells. LA-UC decreased G2/M checkpoint proteins, including cyclin B1 and Cdc2, while activating caspase-3 and caspase-9, resulting in G2/M cell cycle arrest and inducing apoptotic cell death in B16F10 cells. The addition of a pan-caspase inhibitor confirmed the caspase-dependent mechanism of LA-UC-induced cell death. Additionally, LA-UC elevated mitochondrial ROS levels, leading to mitochondrial membrane disruption, upregulation of pro-apoptotic proteins, and DNA damage in melanoma cells. The ROS scavenger N-acetylcysteine reduced LA-UC-induced mitochondrial ROS accumulation, mitochondrial membrane disruption, DNA damage, and apoptosis. Collectively, these findings suggest that LA-UC induces G2/M cell cycle arrest and caspase-dependent apoptosis in B16F10 cells through excessive mitochondrial ROS generation, membrane impairment, and DNA damage, highlighting its potential as a promising therapeutic candidate for melanoma treatment. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents, 4th Edition)
Show Figures

Figure 1

Back to TopTop