Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Luzhou-flavor liquor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2785 KiB  
Article
Difference Analysis of the Composition of Iron (Hydr)Oxides and Dissolved Organic Matter in Pit Mud of Different Pit Ages in Luzhou Laojiao and Its Implications for the Ripening Process of Pit Mud
by Kairui Jiao, Bo Deng, Ping Song, Hailong Ding, Hailong Liu and Bin Lian
Foods 2023, 12(21), 3962; https://doi.org/10.3390/foods12213962 - 30 Oct 2023
Viewed by 1966
Abstract
Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate [...] Read more.
Long-term production practice proves that good liquor comes out of the old cellar, and the aged pit mud is very important to the quality of Luzhou-flavor liquor. X-ray diffraction, Fourier transform ion cyclotron resonance mass spectrometry, and infrared spectroscopy were used to investigate the composition characteristics of iron-bearing minerals and dissolved organic matter (DOM) in 2-year, 40-year, and 100-year pit mud and yellow soil (raw materials for making pit mud) of Luzhou Laojiao distillery. The results showed that the contents of total iron and crystalline iron minerals decreased significantly, while the ratio of Fe(II)/Fe(III) and the content of amorphous iron (hydr)oxides increased significantly with increasing cellar age. DOM richness, unsaturation, and aromaticity, as well as lignin/phenolics, polyphenols, and polycyclic aromatics ratios, were enhanced in pit mud. The results of the principal component analysis indicate that changes in the morphology and content of iron-bearing minerals in pit mud were significantly correlated with the changes in DOM molecular components, which is mainly attributed to the different affinities of amorphous iron (hydr)oxides and crystalline iron minerals for the DOM components. The study is important for understanding the evolution pattern of iron-bearing minerals and DOM and their interactions during the aging of pit mud and provides a new way to further understand the influence of aged pit mud on Luzhou-flavor liquor production. Full article
Show Figures

Graphical abstract

Back to TopTop