Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = MB-ZnO nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5169 KB  
Article
Natural Sunlight Driven Photocatalytic Degradation of Methylene Blue and Rhodamine B over Nanocrystalline Zn2SnO4/SnO2
by Maria Vesna Nikolic, Zorka Z. Vasiljevic, Milena Dimitrijevic, Nadezda Radmilovic, Jelena Vujancevic, Marija Tanovic and Nenad B. Tadic
Nanomaterials 2025, 15(14), 1138; https://doi.org/10.3390/nano15141138 - 21 Jul 2025
Cited by 1 | Viewed by 709
Abstract
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the [...] Read more.
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the solid-state synthesis method was tested as a heterojunction photocatalyst material for the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes as single and multicomponent systems in natural sunlight. Characterization of the structure and morphology of the synthesized nanocomposite using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectroscopy confirmed the formation of Zn2SnO4/SnO2 and heterojunctions between Zn2SnO4 and the SnO2 nanoparticles. A photodegradation efficiency of 99.1% was achieved in 120 min with 50 mg of the photocatalyst for the degradation of MB and 70.6% for the degradation of RhB under the same conditions. In the multicomponent system, the degradation efficiency of 97.9% for MB and 53.2% for RhB was obtained with only 15 mg of the photocatalyst. The degradation of MB occurred through N-demethylation and the formation of azure intermediates and degradation of RhB occurred through sequential deethylation and fragmentation of the xanthene ring, both in single and multicomponent systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

12 pages, 1455 KB  
Article
Hydrothermal Synthesis of Nanocomposites Combining Tungsten Trioxide and Zinc Oxide Nanosheet Arrays for Improved Photocatalytic Degradation of Organic Dye
by Chien-Yie Tsay, Tao-Ying Hsu, Gang-Juan Lee, Chin-Yi Chen, Yu-Cheng Chang, Jing-Heng Chen and Jerry J. Wu
Nanomaterials 2025, 15(10), 772; https://doi.org/10.3390/nano15100772 - 21 May 2025
Viewed by 476
Abstract
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy [...] Read more.
Both tungsten trioxide (WO3) nanosheet arrays and tungsten trioxide/zinc oxide (WO3/ZnO) nanocomposites were grown on fluorine-doped tin oxide (FTO) coated glass slides using a hydrothermal method to develop a visible-light-driven photocatalyst with easy reusability. Field emission scanning electron microscopy (FE-SEM) observations confirmed the formation of irregular oxide nanosheet arrays on the FTO surfaces. X-ray diffraction (XRD) analysis revealed the presence of hexagonal WO3 and wurtzite ZnO crystal phases. UV-Vis diffuse reflectance spectroscopy showed that integrating ZnO nanostructures with WO3 nanosheets resulted in a blue shift of the absorption edge and a reduced absorption capacity in the visible-light region. Photoluminescence (PL) spectra indicated that the WO 0.5/ZnO 2.0 sample exhibited the lowest electron-hole recombination rate among the WO3/ZnO nanocomposite sample. Photocatalytic degradation tests demonstrated that all WO3/ZnO nanocomposite samples had higher photodegradation rates for a 10 ppm methylene blue (MB) aqueous solution under visible-light irradiation compared to pristine WO3 nanosheet arrays. Among them, the WO 0.5/ZnO 2.0 sample showed the highest photocatalytic efficiency. Furthermore, it exhibited excellent recyclability and high photodegradation stability over three cycles. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

13 pages, 4072 KB  
Article
High-Performance Photocatalytic Degradation—A ZnO Nanocomposite Co-Doped with Gd: A Systematic Study
by Aeshah Alasmari, Nadi Mlihan Alresheedi, Mohammed A. Alzahrani, Fahad M. Aldosari, Mostafa Ghasemi, Atef Ismail and Abdelaziz M. Aboraia
Catalysts 2024, 14(12), 946; https://doi.org/10.3390/catal14120946 - 20 Dec 2024
Cited by 1 | Viewed by 1384
Abstract
This research aims to analyze the improvement in the photocatalytic properties of ZnO nanoparticles by incorporating Gd. In order to understand the influence of incorporating Gd into the ZnO matrix, the photocatalytic activity of the material is compared at various Gd concentrations. Different [...] Read more.
This research aims to analyze the improvement in the photocatalytic properties of ZnO nanoparticles by incorporating Gd. In order to understand the influence of incorporating Gd into the ZnO matrix, the photocatalytic activity of the material is compared at various Gd concentrations. Different doping concentrations of Gd ranging from 0 to 0.075 are incorporated into ZnO and the synthesized ZnO-Gd nanocomposites are investigated using structural, morphological, and optical analyses using XRD, SEM, and UV-vis spectroscopy, respectively. The photocatalytic performance of the synthesized ZnO-Gd nanocomposites is determined via the degradation of organic contaminants under visible light. Regarding the latter, the results suggest that photocatalytic efficiency increases with increasing Gd doping levels up to an optimal doping concentration. The enhancement of the photocatalytic performance of Gd-doped ZnO is explained, along with the mechanism related to the availability of new pathways for charge carrier recombination. Among all of them, the 0.075 Gd-doped ZnO catalyst exhibits the highest photocatalytic activity which degrades 89% of MB dye after being irradiated with UV light for 120 min. However, pure ZnO degrades only 40% of MB dye within the same testing conditions. In closing, this work confirms the applicability of Gd-doped ZnO nanocomposites as photocatalysts in cleaning up the environment and in wastewater treatment. Full article
(This article belongs to the Special Issue Design and Application of Combined Catalysis)
Show Figures

Graphical abstract

1 pages, 127 KB  
Abstract
Synthesis and Characterization of Graphitic Carbon Nitride (g-C3N4)/Zinc Oxide Hybrid Nanocomposites for Photocatalytic and Biomedical Application
by Suneel and Qazi Inamur Rahman
Proceedings 2024, 103(1), 33; https://doi.org/10.3390/proceedings2024103033 - 12 Apr 2024
Viewed by 800
Abstract
Graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) are two promising materials that have been extensively studied for their potential applications in the photocatalytic and biomedical fields, including biosensors, bioimaging, photodynamic therapy, and antimicrobials, because of its biocompatible nature. [...] Read more.
Graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) are two promising materials that have been extensively studied for their potential applications in the photocatalytic and biomedical fields, including biosensors, bioimaging, photodynamic therapy, and antimicrobials, because of its biocompatible nature. The synthesis of g-C3N4/ZnO nanocomposites will be achieved through hydrothermal synthesis to produce materials with enhanced photocatalytic and biomedical properties due to the development of heterojunctions. The synthesized g-C3N4/ZnO hybrid nanostructures have a band gap of around 2.85 eV to 3.01 eV. The photocatalytic activity of the composites is evaluated through the degradation of organic pollutants (MB, RB171, RhB dyes) under simulated solar irradiation, demonstrating their potential for environmental remediation. In biomedical applications, the g-C3N4/ZnO nanocomposites exhibit biocompatibility and are explored for use in antimicrobial coatings. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis(ultra-violet visible) spectroscopy are employed to analyze the crystal structure, surface morphology, particle size, chemical composition, and optical properties of the composites. The comprehensive characterization of these materials is crucial for their successful development and utilization in various technological domains. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
22 pages, 14238 KB  
Article
Biosynthesis of Gold- and Silver-Incorporated Carbon-Based Zinc Oxide Nanocomposites for the Photodegradation of Textile Dyes and Various Pharmaceuticals
by Dineo A. Bopape, David E. Motaung and Nomso C. Hintsho-Mbita
Textiles 2024, 4(1), 104-125; https://doi.org/10.3390/textiles4010008 - 5 Mar 2024
Cited by 4 | Viewed by 2194
Abstract
Wastewater contaminated with dyes from the textile industry has been at the forefront in the last few decades, thus, it is imperative to find treatment methods that are safe and efficient. In this study, C. benghalensis plant extracts were used to synthesise by [...] Read more.
Wastewater contaminated with dyes from the textile industry has been at the forefront in the last few decades, thus, it is imperative to find treatment methods that are safe and efficient. In this study, C. benghalensis plant extracts were used to synthesise by mass 20 mg/80 mg zinc oxide–carbon spheres (20/80 ZnO–CSs) nanocomposites, and the incorporation of the nanocomposites with 1% silver (1% Ag–ZnO–CSs) and 1% gold (1% Au–ZnO–CSs) was conducted. The impact of Ag and Au dopants on the morphological, optical, and photocatalytic properties of these nanocomposites in comparison to 20/80 ZnO–CSs was investigated. TEM, XRD, UV-vis, FTIR, TGA, and BET revealed various properties for these nanocomposites. TEM analysis revealed spherical particles with size distributions of 40–80 nm, 50–200 nm, and 50–250 nm for 1% Ag–ZnO–CSs, 1% Au–ZnO–CSs, and 20/80 ZnO–CSs, respectively. XRD data showed peaks corresponding to Ag, Au, ZnO, and CSs in all nanocomposites. TGA analysis reported a highly thermally stable material in ZnO-CS. The photocatalytic testing showed the 1% Au–ZnO–CSs to be the most efficient catalyst with a 98% degradation for MB textile dye. Moreover, 1% Au–ZnO–CSs also exhibited high degradation percentages for various pharmaceuticals. The material could not be reused and the trapping studies demonstrated that both OH• radicals and the e play a crucial role in the degradation of the MB. The photocatalyst in this study demonstrated effectiveness and high flexibility in degrading diverse contaminants. Full article
Show Figures

Graphical abstract

15 pages, 2720 KB  
Article
Antibacterial and Photocatalytic Activity of ZnO/Au and ZnO/Ag Nanocomposites
by Mariana Busila, Viorica Musat, Petrica Alexandru, Cosmin Romanitan, Oana Brincoveanu, Vasilica Tucureanu, Iuliana Mihalache, Alina-Viorica Iancu and Violeta Dediu
Int. J. Mol. Sci. 2023, 24(23), 16939; https://doi.org/10.3390/ijms242316939 - 29 Nov 2023
Cited by 23 | Viewed by 3633
Abstract
The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In [...] Read more.
The use of a combination of nanoparticles as antimicrobial agents can be one strategy to overcome the tendency of microbes to become resistant to antibiotic action. Also, the optimization of nano-photocatalysts to efficiently remove persistent pollutants from wastewater is a hot topic. In this study, two composites ZnO/Au (1% wt.) and ZnO/Ag (1% wt.) were synthesized by simple aqueous solution methods. The structure and morphology of the r nanocomposites were analyzed by structural and optical characterization methods. The formation of AuNPs and AgNPs in these experiments was also discussed. The antimicrobial properties of ZnO, ZnO/Au, and ZnO/Ag nanomaterials were investigated against Gram-negative bacteria (Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). The results showed an increase of 80% in the antimicrobial activity of ZnO/Au against Pseudomonas aeruginosa compared with 30% in the case of ZnO/Ag. Similarly, in the case of the S. aureus strain tests, ZnO/Au increased the antimicrobial activity by 55% and ZnO/Ag by 33%. The photocatalytic tests indicated an improvement in the photocatalytic degradation of methylene blue (MB) under UV irradiation using ZnO/Au and ZnO/Ag nanocomposites compared to bare ZnO. The photocatalytic degradation efficiency of ZnO after 60 min of UV irradiation was ∼83%, while the addition of AuNPs enhanced the degradation rate to ∼95% (ZP2), and AgNP presence enhanced the efficiency to ∼98%. The introduction of noble metallic nanoparticles into the ZnO matrix proved to be an effective strategy to increase their antimicrobial activity against P. aeruginosa and S. aureus, and their photocatalytic activity was evaluated through the degradation of MB dye. Comparing the enhancing effects of Au and Ag, it was found that ZnO/Au was a better antimicrobial agent while ZnO/Ag was a more effective photocatalyst under UV irradiation. Full article
Show Figures

Figure 1

16 pages, 6280 KB  
Article
Green Synthesis of ZnO/SnO2 Hybrid Nanocomposite for Degradation of Cationic and Anionic Dyes under Sunlight Radiation
by Naaser A. Y. Abduh and Abdel-Basit Al-Odayni
Materials 2023, 16(23), 7398; https://doi.org/10.3390/ma16237398 - 28 Nov 2023
Cited by 4 | Viewed by 2029
Abstract
The aim of this work was to biosynthesize SnO2-decorated ZnO (ZT) nanocomposites (NCs) of different Sn content (10, 20, and 30 mol%), namely, ZT10, ZT20, and ZT30, using Olea europaea leaf aqueous extract-based phytocompounds as nanoparticle facilitating agents for application as [...] Read more.
The aim of this work was to biosynthesize SnO2-decorated ZnO (ZT) nanocomposites (NCs) of different Sn content (10, 20, and 30 mol%), namely, ZT10, ZT20, and ZT30, using Olea europaea leaf aqueous extract-based phytocompounds as nanoparticle facilitating agents for application as effective photocatalyst in the removal of dyes from polluted water. The obtained ZT NCs were characterized using various techniques, including FTIR, XRD, TGA, TEM, EDS, UV–Vis, PL, and BET surface area. X-ray diffraction patterns show that rutile SnO2 and hexagonal ZnO coexist in the composites, and their crystallite size (D) is affected by the SnO2 ratio; the obtained D-values were 17.24, 19.07, 13.99, 6.45, and 12.30 nm for ZnO, SnO2, ZT10, ZT20, and ZT30, respectively. The direct band gaps of the ZT heterostructure increase with increasing SnO2 ratio (band gap = 3.10, 3.45, 3.14, 3.17, and 3.21 eV, respectively). TEM spectroscopy revealed nanorod and spherical grain morphologies of the composites, while EDS confirmed the elemental composition, the element ratio, and the composite’s purity. All catalysts exhibit type III isotherm with macropore structure. The photocatalytic efficiency against cationic (methylene blue (MB), rhodamine B (RB)), and anionic (methyl orange (MO)) dyes, under sunlight, was optimal with ZT20. The results revealed almost complete degradation at 55, 65, and 55 min, respectively. Hence, it is evident that incorporating SnO2 improves the photocatalyst’s performance, with an apparent optimal enhancement at 20 mol% Sn decorating ZT NCs. More interestingly, the catalyst stability and activity remained unaffected even after four activating cycles. Full article
(This article belongs to the Special Issue Emerging Catalytic Materials and Environmental Applications)
Show Figures

Figure 1

19 pages, 6040 KB  
Article
Photocatalytic Degradation of Methylene Blue from Aqueous Solutions by Using Nano-ZnO/Kaolin-Clay-Based Nanocomposite
by Shreya Modi, Virendra Kumar Yadav, Daoud Ali, Nisha Choudhary, Saud Alarifi, Dipak Kumar Sahoo, Ashish Patel and Madhusudan Hiraman Fulekar
Water 2023, 15(22), 3915; https://doi.org/10.3390/w15223915 - 9 Nov 2023
Cited by 12 | Viewed by 4033
Abstract
Dyes are toxic organic compounds released as effluent from various industries that need proper treatment as they pose serious hazards to the environment and living beings, including humans. Nanocomposites can be employed as photocatalysts for the elimination of such organic compounds from wastewater. [...] Read more.
Dyes are toxic organic compounds released as effluent from various industries that need proper treatment as they pose serious hazards to the environment and living beings, including humans. Nanocomposites can be employed as photocatalysts for the elimination of such organic compounds from wastewater. One such attempt is made in this present research study, where a zinc-based nanocomposite has been fabricated for the elimination of the methylene blue dye (MB). For the development of nanocomposite, zinc oxide nanoparticles (ZnONPs) were prepared to utilize Allium sativa peel (garlic skin) extract, which was further processed to develop ZnO/kaolin clay NC. ZnONPs and ZnO/kaolin clay NC formation have been confirmed by UV–Vis spectral bands at 379 nm and 423 nm. The NC was rod-shaped, with width of 60–100 nm and length of 200–800 nm and an average size of 50.0 ± 0.58 nm. Both materials were compared for their efficacy in photocatalytic degradation of the MB under solar light irradiation. ZnONPs removed 65% of MB, whereas the degradation efficiency of ZnO/clay NC was calculated to be 96% for 10 ppm MB. A kinetics study for photocatalytic degradation of MB using both nanomaterials showed that the photocatalytic degradation followed the pseudo-first-order (PFO) type of reaction. This investigation represents an expeditious, lucrative, ecological, and appropriate technique for the fabrication of functional nanomaterials for the remediation of diverse organic pollutants. Full article
Show Figures

Figure 1

19 pages, 5833 KB  
Article
Photocatalytic Degradation, Anticancer, and Antibacterial Studies of Lysinibacillus sphaericus Biosynthesized Hybrid Metal/Semiconductor Nanocomposites
by Kannan Badri Narayanan, Rakesh Bhaskar, Yong Joo Seok and Sung Soo Han
Microorganisms 2023, 11(7), 1810; https://doi.org/10.3390/microorganisms11071810 - 14 Jul 2023
Cited by 6 | Viewed by 2534
Abstract
The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this [...] Read more.
The biological synthesis of nanocomposites has become cost-effective and environmentally friendly and can achieve sustainability with high efficiency. Recently, the biological synthesis of semiconductor and metal-doped semiconductor nanocomposites with enhanced photocatalytic degradation efficiency, anticancer, and antibacterial properties has attracted considerable attention. To this end, for the first time, we biosynthesized zinc oxide (ZnO) and silver/ZnO nanocomposites (Ag/ZnO NCs) as semiconductor and metal-doped semiconductor nanocomposites, respectively, using the cell-free filtrate (CFF) of the bacterium Lysinibacillus sphaericus. The biosynthesized ZnO and Ag/ZnO NCs were characterized by various techniques, such as ultraviolet-visible spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The photocatalytic degradation potential of these semiconductor NPs and metal-semiconductor NCs was evaluated against thiazine dye, methylene blue (MB) degradation, under simulated solar irradiation. Ag/ZnO showed 90.4 ± 0.46% photocatalytic degradation of MB, compared to 38.18 ± 0.15% by ZnO in 120 min. The cytotoxicity of ZnO and Ag/ZnO on human cervical HeLa cancer cells was determined using an MTT assay. Both nanomaterials exhibited cytotoxicity in a concentration- and time-dependent manner on HeLa cells. The antibacterial activity was also determined against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus). Compared to ZnO, Ag/ZnO NCs showed higher antibacterial activity. Hence, the biosynthesis of semiconductor nanoparticles could be a promising strategy for developing hybrid metal/semiconductor nanomaterials for different biomedical and environmental applications. Full article
(This article belongs to the Special Issue Microbial Nanotechnology 2.0)
Show Figures

Figure 1

12 pages, 9254 KB  
Article
Hydrothermal Fabrication of GO Decorated Dy2WO6-ZnO Ternary Nanocomposites: An Efficient Photocatalyst for the Degradation of Organic Dye
by Karuppaiah Selvakumar, Tae Hwan Oh, Muthuraj Arunpandian, Kanakaraj Aruchamy and Veerababu Polisetti
Appl. Sci. 2023, 13(12), 7145; https://doi.org/10.3390/app13127145 - 14 Jun 2023
Cited by 5 | Viewed by 1901
Abstract
Environmental and human health are seriously threatened by organic dye pollution. Many efforts have been made to find effective and safe methods of eliminating these contaminants. To mitigate these effects, the hydrothermal method was used to effectively generate a ternary kind of Dy [...] Read more.
Environmental and human health are seriously threatened by organic dye pollution. Many efforts have been made to find effective and safe methods of eliminating these contaminants. To mitigate these effects, the hydrothermal method was used to effectively generate a ternary kind of Dy2WO6-ZnO embedded in graphene oxide (DWZG) nanocomposites, which were used to degrade the pollutant. Powder X-ray diffraction (XRD) investigation confirms the crystalline character of the as-prepared DWZG nanocomposite. The Dy2WO6-ZnO composition on the graphene oxide (GO) layer is shaped like a combination of algae (Dy2WO6) and clusters (ZnO), as shown by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) investigation revealed the composition of elements and oxidation state of C, Dy, O, W and Zn elements. Methylene blue (MB) was chosen as the organic dye target for photocatalytic degradation using the produced nanocomposites. MB is degraded with a photocatalytic efficiency of 98.2% in about 30 min using a DWZG catalyst. Based on the result of the research entitled “Reactive Oxidative Species,” the primary reactive species involved in the MB degradation are photo-generated OH and O2•− radicals. The recycle test was also successful in evaluating the catalysts’ long-term viability as well as their reusability. Full article
Show Figures

Figure 1

7 pages, 1080 KB  
Proceeding Paper
Synthesis and Application of Magnesium-Based Nanoparticles for the Photocatalytic Degradation of Methylene Blue in Aqueous Solutions: Optimization and Kinetic Modeling
by Khumbolake Faith Ngulube, Mahmoud Nasr, Manabu Fujii and Amal Abdelhaleem
Eng. Proc. 2023, 37(1), 75; https://doi.org/10.3390/ECP2023-14636 - 17 May 2023
Cited by 2 | Viewed by 1127
Abstract
Heterogeneous photocatalysis has been studied with various semiconductor materials for the efficient degradation of various water pollutants; however, there is the challenge of wide-bandgap photocatalyst materials, which limits their application under visible-light irradiation. Herein, a ZnO@MgO core–shell nanocomposite was synthesized using co-precipitation and [...] Read more.
Heterogeneous photocatalysis has been studied with various semiconductor materials for the efficient degradation of various water pollutants; however, there is the challenge of wide-bandgap photocatalyst materials, which limits their application under visible-light irradiation. Herein, a ZnO@MgO core–shell nanocomposite was synthesized using co-precipitation and applied to the photocatalytic degradation of MB dye under visible-light irradiation. MB degradation was optimized using the response surface methodology, resulting in 95.948% and ≈91% predicted and actual MB removals, respectively, at a 10 mg/L MB concentration, 1000 mg/L catalyst dose, pH 10, and time of 115.7 min. The degradation kinetics were studied, and it was found that the degradation followed pseudo-first-order kinetics with a rate constant of k = 0.07593 min−1. A cost–benefit analysis was undertaken, and the operating costs were estimated based on the optimized conditions at $7.6/m3 with a payback period of 3.2 years. Full article
Show Figures

Figure 1

19 pages, 4359 KB  
Article
Engineering of a Hybrid g-C3N4/ZnO-W/Cox Heterojunction Photocatalyst for the Removal of Methylene Blue Dye
by Misbah Malik, Sobhy M. Ibrahim, Muhammad Altaf Nazir, Asif A. Tahir, Muhammad Khurram Tufail, Syed Shoaib Ahmad Shah, Aqsa Anum, Muhammad Ahmad Wattoo and Aziz ur Rehman
Catalysts 2023, 13(5), 813; https://doi.org/10.3390/catal13050813 - 27 Apr 2023
Cited by 61 | Viewed by 3357
Abstract
Robust hybrid g-C3N4/ZnO-W/Cox heterojunction composites were synthesized using graphitic carbon nitride (g-C3N4) and ZnO-W nanoparticles (NPs) and different concentrations of Co dopant. The hybrid heterojunction composites were prepared by simple and low-cost coprecipitation methods. [...] Read more.
Robust hybrid g-C3N4/ZnO-W/Cox heterojunction composites were synthesized using graphitic carbon nitride (g-C3N4) and ZnO-W nanoparticles (NPs) and different concentrations of Co dopant. The hybrid heterojunction composites were prepared by simple and low-cost coprecipitation methods. The fabricated catalyst was explored and investigated using various characterization techniques such as FTIR, XRD, FESEM and EDX. The surface morphology of the as-prepared hybrid nanocomposites with particle sizes in the range of 15–16 nm was validated by SEM analysis. The elemental composition of the synthesized composites was confirmed by EDS analysis. Photocatalysis using a photon as the sole energy source is considered a challenging approach for organic transformations under ambient conditions. The photocatalytic activity of the heterojunctions was tested by photodegrading methylene blue (MB) dye in the presence of sunlight. The reduced band gap of the heterojunction composite of 3.22–2.28 eV revealed that the incorporation of metal ions played an imperative role in modulating the light absorption range for photocatalytic applications. The as-synthesized g-C3N4/ZnO-W/Co0.010 composite suppressed the charge recombination ability during the photocatalytic degradation of methylene blue (MB) dye. The ternary heterojunction C3N4/ZnO-W/Co0.010 composite showed an impressive photocatalytic performance with 90% degradation of MB under visible light within 90 min of irradiation, compared to the outcomes achieved with the other compositions. Lastly, the synthesized composites showed good recyclability and mechanical stability over five cycles, confirming them as promising photocatalyst options in the future. Full article
Show Figures

Graphical abstract

10 pages, 2840 KB  
Article
Photocatalytic and Glucose Sensing Properties of ZnO-Based Nanocoating
by Dina Bakranova, Bekbolat Seitov and Nurlan Bakranov
ChemEngineering 2023, 7(2), 22; https://doi.org/10.3390/chemengineering7020022 - 9 Mar 2023
Cited by 7 | Viewed by 2691
Abstract
Here, we report a simple and versatile synthesis of low-dimensional ZnO nanosheet (NS) arrays modified with Fe2O3 (hematite) to assemble photocatalytic coatings and non-enzymatic glucose sensors. Photocatalytic coatings made of widespread elements (zinc and iron) were tested for methylene blue [...] Read more.
Here, we report a simple and versatile synthesis of low-dimensional ZnO nanosheet (NS) arrays modified with Fe2O3 (hematite) to assemble photocatalytic coatings and non-enzymatic glucose sensors. Photocatalytic coatings made of widespread elements (zinc and iron) were tested for methylene blue (MB) dye decolorization under ultraviolet and visible (UV-vis) irradiation. A comparative study of unmodified and modified ZnO NS photocatalysts revealed a significant decrease in the dye concentration in 180 min when ZnO/Fe2O3 arrays were used. Size dependence efficiency of the hematite layer deposited onto ZnO is presented. A study of the sensitivity of biosensors made of ZnO nanostructures and ZnO/Fe2O3 nanocomposites for glucose detection showed an improvement in sensitivity with increased Fe2O3 thickness. The structure and morphology of low-dimensional coatings were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The optical properties of nanoarrays showed a red shift of absorption after modifying ZnO with hematite layers, which holds good promise for expanding photocatalytic activity in the visible region. Full article
Show Figures

Figure 1

14 pages, 2680 KB  
Article
Successive Photocatalytic Degradation of Methylene Blue by ZnO, CuO and ZnO/CuO Synthesized from Coriandrum sativum Plant Extract via Green Synthesis Technique
by Raja Abdul Basit, Zeeshan Abbasi, Muhammad Hafeez, Pervaiz Ahmad, Jahanzeb Khan, Mayeen Uddin Khandaker, Kholoud Saad Al-Mugren and Awais Khalid
Crystals 2023, 13(2), 281; https://doi.org/10.3390/cryst13020281 - 7 Feb 2023
Cited by 53 | Viewed by 5834
Abstract
In this study, successful synthesis of ZnO nanoparticles (NPs), CuO NPs, and ZnO/CuO nanocomposite through an eco-friendly method using Corriandrum sativum leaf extract as a capping agent is reported. Using XRD, FTIR, UV-Vis, and SEM techniques, the synthesized materials were characterized for structural [...] Read more.
In this study, successful synthesis of ZnO nanoparticles (NPs), CuO NPs, and ZnO/CuO nanocomposite through an eco-friendly method using Corriandrum sativum leaf extract as a capping agent is reported. Using XRD, FTIR, UV-Vis, and SEM techniques, the synthesized materials were characterized for structural analysis, functional groups identification, spectroscopic measurements, and morphological analysis. The percentage composition and purity of the samples were determined by using Energy Dispersive X-ray (EDX), which showed the synthesis of materials. Morphological analysis was done by Scanning Electron Microscopy (SEM) which reflected that the CuO NPs, ZnO NPs and ZnO/CuO nanocomposite were spherical, and the average size calculated by using Image J software was around 25 nm, 55 nm, and 11 nm, respectively. FTIR and UV-Vis analyses were used for synthetic confirmation through characteristic peaks of materials. The synthesized (ZnO, CuO, and CuO/ZnO) nanomaterials were evaluated for photocatalytic activity using methylene blue (MB) dye. Among all three photocatalysts, the composite showed maximum photodegradation compared to the other two materials. The present work could lead to a pathway for the decontamination of harmful dyes of wastewater released from different industries. Full article
(This article belongs to the Special Issue Advances in Multifunctional Nanocomposites)
Show Figures

Figure 1

13 pages, 4841 KB  
Article
G-C3N4 Dots Decorated with Hetaerolite: Visible-Light Photocatalyst for Degradation of Organic Contaminants
by Zahra Lahootifar, Aziz Habibi-Yangjeh, Shima Rahim Pouran and Alireza Khataee
Catalysts 2023, 13(2), 346; https://doi.org/10.3390/catal13020346 - 3 Feb 2023
Cited by 7 | Viewed by 2284
Abstract
In this paper, a facile hydrothermal approach was used to integrate graphitic carbon nitride dots (CNDs) with hetaerolite (ZnMn2O4) at different weight percentages. The morphology, microstructure, texture, electronic, phase composition, and electrochemical properties were identified by field emission scanning [...] Read more.
In this paper, a facile hydrothermal approach was used to integrate graphitic carbon nitride dots (CNDs) with hetaerolite (ZnMn2O4) at different weight percentages. The morphology, microstructure, texture, electronic, phase composition, and electrochemical properties were identified by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), ultraviolet-visible diffuse reflectance (UV-vis DR), photoluminescence (PL), electrochemical impedance spectroscopy (EIS), Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH), and photocurrent density. The results of XRD, FT-IR, EDX, and XPS analyses confirmed the synthesis of CNDs/ZnMn2O4 (20%) nanocomposite. As per PL, EIS, and photocurrent outcomes, the binary CNDs/ZnMn2O4 nanocomposite revealed superior features for interfacial transferring of charge carriers. The developed p–n heterojunction at the interface of CNDs and ZnMn2O4 nanoparticles partaken a significant role in the impressive charge segregation and migration. The binary nanocomposites were employed for the photodegradation of several dye pollutants, including rhodamine B (RhB), fuchsin, malachite green (MG), and methylene blue (MB) at visible wavelengths. Amongst the fabricated photocatalysts, the CNDs/ZnMn2O4 (20%) nanocomposite gave rise to about 98% RhB degradation efficiency within 45 min with the rate constant of 747 × 10−4 min−1, which was 66.5-, 3.44-, and 2.72-fold superior to the activities of CN, CNDs, and ZnMn2O4 photocatalysts, respectively. The impressive photodegradation performance of this nanocomposite was not only associated with the capacity for impressive visible-light absorption and boosted separation and transport of charge carriers, but also with its large surface area. Full article
(This article belongs to the Special Issue Advanced Oxidation Catalysts)
Show Figures

Figure 1

Back to TopTop