Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = MCnest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1302 KiB  
Article
Using Pop-GUIDE to Assess the Applicability of MCnest for Relative Risk of Pesticides to Hummingbirds
by Matthew A. Etterson, Elizabeth A. Paulukonis and S. Thomas Purucker
Ecologies 2023, 4(1), 171-194; https://doi.org/10.3390/ecologies4010013 - 3 Mar 2023
Cited by 2 | Viewed by 2625
Abstract
Hummingbirds are charismatic fauna that provide important pollination services, including in the continental US, where 15 species regularly breed. Compared to other birds in North America, hummingbirds (family Trochilidae) have a unique exposure route to pesticides because they forage on nectar. Therefore, hummingbirds [...] Read more.
Hummingbirds are charismatic fauna that provide important pollination services, including in the continental US, where 15 species regularly breed. Compared to other birds in North America, hummingbirds (family Trochilidae) have a unique exposure route to pesticides because they forage on nectar. Therefore, hummingbirds may be exposed to systemic pesticides borne in nectar. They also may be particularly vulnerable to pesticide exposure due to their small size and extreme metabolic demands. We review relevant factors including hummingbird life history, nectar residue uptake, and avian bioenergetic considerations with the goal of clearly identifying and articulating the specific modeling challenges that must be overcome to develop and/or adapt existing modeling approaches. To help evaluate these factors, we developed a dataset for ruby-throated hummingbirds (Archilochus colubris) and other avian species potentially exposed to pesticides. We used the systemic neonicotinoid pesticide imidacloprid as an illustration and compared results to five other common current use pesticides. We use the structure of Pop-GUIDE to provide a conceptual modeling framework for implementation of MCnest and to compile parameter values and relevant algorithms to predict the effects of pesticide exposure on avian pollinators. Conservative screening assessments suggest the potential for adverse effects from imidacloprid, as do more refined assessments, though many important limitations and uncertainties remain. Our review found many areas in which current USEPA avian models must be improved in order to conduct a full higher-tier risk assessment for avian pollinators exposed to neonicotinoid insecticides, including addition of models suitable for soil and seed treatments within the MCnest environment, ability to include empirical residue data in both nectar and invertebrates rather than relying on existing nomograms, expansion of MCnest to a full annual cycle, and increased representation of spatial heterogeneity. Although this work focuses on hummingbirds, the methods and recommendations may apply more widely to other vertebrate pollinators. Full article
Show Figures

Figure 1

14 pages, 454 KiB  
Article
Realism, Conservatism, and Tiered Ecological Risk Assessment
by Matthew A. Etterson
Ecologies 2022, 3(2), 131-144; https://doi.org/10.3390/ecologies3020011 - 26 May 2022
Cited by 4 | Viewed by 2468
Abstract
Recent research has provided valuable momentum for the development and use of population models for ecological risk assessment (ERA). In general, ERA proceeds along a tiered strategy, with conservative assumptions deployed at lower tiers that are relaxed at higher tiers with ever more [...] Read more.
Recent research has provided valuable momentum for the development and use of population models for ecological risk assessment (ERA). In general, ERA proceeds along a tiered strategy, with conservative assumptions deployed at lower tiers that are relaxed at higher tiers with ever more realistic models. As the tier increases, so do the levels of time and effort required by the assessor. When faced with many stressors, species, and habitats, risk assessors need to find efficiencies. Conservative lower-tier approaches are well established, but higher-tier models often prioritize accuracy, and conservative approaches are relatively unexplored at higher tiers. A principle of efficiency for ecological modeling for population-level ecological risk assessment is articulated and evaluated against a conceptual model and an existing set of avian models for chemical risk assessment. Here, four published avian models are reviewed in increasing order of realism (risk quotient → Markov chain nest productivity model → endogenous lifecycle model → spatially explicit population model). Models are compared in a pairwise fashion according to increasing realism and evaluated as to whether conservatism increases or decreases with each step. The principle of efficiency is shown to be a challenging ideal, though some cause for optimism is identified. Strategies are suggested for studying efficiency in tiered ecological model deployment. Full article
Show Figures

Figure 1

Back to TopTop