Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,010)

Search Parameters:
Keywords = MEK2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 964 KB  
Review
Optic Pathway Glioma: Current Treatment Approaches and Ongoing Clinical Trials
by Osama Elzaafarany, Sarah Elhomosany, Alexandra Rincones, Vincent Dlugi and Sepideh Mokhtari
Brain Sci. 2025, 15(8), 894; https://doi.org/10.3390/brainsci15080894 - 21 Aug 2025
Viewed by 274
Abstract
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a [...] Read more.
Optic pathway glioma (OPG) is a rare pediatric low-grade glioma, frequently associated with neurofibromatosis type 1 (NF–1), that presents unique therapeutic challenges due to its anatomical location and its potential to impair vision, endocrine function, and developmental trajectories. Current clinical management prioritizes a multidisciplinary, patient-specific approach aimed at tumor control while preserving long-term quality of life. Strategies vary based on clinical presentation, ranging from observation in asymptomatic cases to chemotherapy for progressive or symptomatic tumors. Surgical and radiation options are limited due to potential risks and complications. In recent years, advances in molecular characterization have guided the development of targeted therapies, particularly MEK inhibitors, which demonstrate encouraging efficacy and reduced toxicity profiles. In parallel, investigational therapies including immunotherapy and precision medicine-based approaches are under clinical evaluation. This review provides a synthesis of current standard practices, emerging targeted treatments, and ongoing clinical trials, drawing on relevant literature and expert consensus to inform clinicians and families about available therapeutic options. Literature discussed in this review was identified through a non-systematic search of published articles, clinical trial registries, and authoritative guidelines, with selection based on relevance, clinical significance, and contribution to understanding current and emerging management strategies for OPG. Full article
(This article belongs to the Section Neuroglia)
Show Figures

Figure 1

42 pages, 1918 KB  
Systematic Review
Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review
by Ilaria Cosci, Valentina Salizzato, Paolo Del Fiore, Jacopo Pigozzo, Valentina Guarneri, Simone Mocellin, Alberto Ferlin, Sara Mathlouthi, Luisa Piccin and Mariangela Garofalo
Pharmaceuticals 2025, 18(8), 1235; https://doi.org/10.3390/ph18081235 - 21 Aug 2025
Viewed by 247
Abstract
Background: Melanoma, the deadliest human skin cancer, frequently harbors activating BRAF mutations, with V600E being the most prevalent. These alterations drive constitutive activation of the MAPK pathway, promoting uncontrolled cell proliferation, survival, and dissemination. The advent of BRAFi and MEKi has significantly [...] Read more.
Background: Melanoma, the deadliest human skin cancer, frequently harbors activating BRAF mutations, with V600E being the most prevalent. These alterations drive constitutive activation of the MAPK pathway, promoting uncontrolled cell proliferation, survival, and dissemination. The advent of BRAFi and MEKi has significantly improved outcomes in BRAF V600-mutant melanoma. However, therapeutic resistance remains a major clinical barrier. Methods: This review integrates recent findings from preclinical and clinical studies to delineate resistance mechanisms to BRAF-targeted therapy. It categorizes resistance into primary (intrinsic), adaptive, and acquired forms, and analyzes their molecular underpinnings, including genetic and epigenetic alterations, pathway reactivation, and microenvironmental interactions. Results: Primary resistance is linked to pre-existing genetic and epigenetic changes that activate alternative signaling pathways, such as PI3K-AKT. Adaptive and acquired resistance includes secondary BRAF mutations, pathway redundancy, phenotype switching, and immune and stromal interactions. High-throughput sequencing has revealed novel mutations, including NRAS, NF1, and PTEN alterations, that contribute to resistance. Discussion: Understanding the multifaceted nature of resistance is critical to improving outcomes in advanced melanoma. This review highlights emerging strategies to overcome resistance, including combinatorial therapies, metabolic targeting, and biomarker-driven approaches, aiming to inform future therapeutic development and precision oncology strategies. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

24 pages, 4005 KB  
Article
Separation of the Biofuel Methyl Ethyl Ketone from Aqueous Solutions Using Avocado-Based Activated Carbons: Synthesis Conditions and Multilayer Adsorption Properties
by Hilda Elizabeth Reynel-Avila, Eduardo Ledea-Figueredo, Lizbeth Liliana Díaz-Muñoz, Adrián Bonilla-Petriciolet, Ismael Alejandro Aguayo-Villarreal, Laura Gabriela Elvir-Padilla and Carlos Javier Durán-Valle
Molecules 2025, 30(16), 3426; https://doi.org/10.3390/molecules30163426 - 20 Aug 2025
Viewed by 246
Abstract
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 [...] Read more.
This study reports the separation of methyl ethyl ketone (MEK), a relevant compound in the biorefinery context, from aqueous solutions using activated carbons derived from avocado seed biomass. Two synthesis routes were explored via chemical and thermal activation with H2SO4 and KOH. A Taguchi experimental design was applied to tailor synthesis conditions, with MEK adsorption capacity as the target property. Adsorption kinetics and isotherms were evaluated to determine the thermodynamic behavior of MEK separation using the best-performing activated carbons. The carbon activated with H2SO4 achieved the highest adsorption capacity (142 mg g−1) at 20 °C and pH 4, surpassing KOH-based materials. This enhanced performance correlated to increased surface area and acidic oxygenated functionalities. However, higher pH and temperature reduced the adsorption efficiency for all adsorbents. Comprehensive characterization was performed using XRD, XRF, FTIR, SEM, N2 adsorption–desorption isotherms, pH at point of zero charge, and surface acidity/basicity analysis via Boehm titration. Thermodynamic data and surface characterization indicated that MEK adsorption occurs via a double-layer mechanism dominated by electrostatic interactions and hydrogen bonding. The findings highlight an optimized approach for tailoring avocado-based activated carbons to efficiently recover MEK from aqueous media, supporting its potential application in downstream purification of fermentation broths for biofuel production and energy transition processes. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Figure 1

13 pages, 983 KB  
Article
Insights for Deriving Induced Pluripotent Stem Cells in Marsh Deer (Blastocerus dichotomus)
by Luciana Diniz Rola, Fabiana Fernandes Bressan, Eluzai Dinai Pinto Sandoval, Jacinthe Therrien, Lawrence Charles Smith and José Maurício Barbanti Duarte
J. Zool. Bot. Gard. 2025, 6(3), 43; https://doi.org/10.3390/jzbg6030043 - 19 Aug 2025
Viewed by 323
Abstract
The capability to generate induced pluripotent stem cells (iPSCs) from adult somatic cells, enabling them to differentiate into any cell type, has been demonstrated in several studies. In humans and mice, iPSCs have been shown to differentiate into primordial germ cells (PGCs), spermatozoa, [...] Read more.
The capability to generate induced pluripotent stem cells (iPSCs) from adult somatic cells, enabling them to differentiate into any cell type, has been demonstrated in several studies. In humans and mice, iPSCs have been shown to differentiate into primordial germ cells (PGCs), spermatozoa, and oocytes. However, research on iPSCs in deer is novel. Despite the necessity for establishing germplasm banks from endangered cervid species, the collection and cryopreservation of gametes and embryos have proven complex for this group. Therefore, the focus of this study was to establish protocols for deriving stable iPSC lines from Blastocerus dichotomus (Marsh deer) using primary cells derived from antler, adipose tissue, or skin, with the ultimate goal of producing viable gametes in the future. To achieve this, two main reprogramming approaches were tested: (1) transfection using PiggyBac transposons (plasmid PB-TET-MKOS) delivered via electroporation and (2) lentiviral transduction using the STEMCCA system with either human (hOSKM) or murine (mOSKM) reprogramming factors. Both systems utilized murine embryonic fibroblasts (MEFs) as feeder cells. The PiggyBac system was further supplemented with a culture medium containing small molecules to aid reprogramming, including a GSK inhibitor, MEK inhibitor, ALK/TGF inhibitor, and thiazovivin. Initial colony formation was observed; however, these colonies failed to expand post-selection. Despite these challenges, important insights were gained that will inform and guide future studies toward the successful generation of iPSCs in deer. Full article
Show Figures

Graphical abstract

10 pages, 2923 KB  
Case Report
Partial Remission Without Recurrence in a 9-Year-Old Golden Retriever with Nasal Carcinoma Treated with Prednisolone/Chlorambucil Metronomic Combination Therapy: A Case Report and Literature Review of Molecular Mechanisms
by Kyuhyung Choi
Curr. Issues Mol. Biol. 2025, 47(8), 660; https://doi.org/10.3390/cimb47080660 - 15 Aug 2025
Viewed by 348
Abstract
This paper reports the first case in which a hyperlipidemic retriever (due to hypothyroidism) with a nasal tumor was successfully treated—achieving partial remission—and managed using a metronomic combination of chlorambucil (3.74 mg/m2, SID) and prednisolone (0.28 mg/kg, SID) orally for 9 [...] Read more.
This paper reports the first case in which a hyperlipidemic retriever (due to hypothyroidism) with a nasal tumor was successfully treated—achieving partial remission—and managed using a metronomic combination of chlorambucil (3.74 mg/m2, SID) and prednisolone (0.28 mg/kg, SID) orally for 9 months at a general practice. A 35 kg spayed female golden retriever aged 8 years and 8 months with nosebleeds visited the Bundang New York Animal Hospital in July 2023 after being diagnosed with nasal carcinoma. A protocol of 4 weeks of chemotherapy followed by 1 week of rest was repeated in two cycles and continued metronomically for 9 months without pause after the two cycles. The nasal exudate was significantly reduced. The size of the nasal tumor was monitored using computed tomography (CT) imaging at a referral hospital. Since the first occurrence of epistaxis, 18 months have passed (as of January 2025) and the nasal exudate is barely visible, and the vital signs and weight of the dog remain stable. The size of the nasal tumor significantly decreased after 9 months of chemotherapy completion without moderate side effects, and all the blood work was normalized, including hypercholesteremia. This study demonstrates that, in hyperlipidemic cancer patients, a prednisolone/chlorambucil metronomic combination which is cost-effective can be an alternative to tyrosine kinase inhibitors such as sorafenib, even when excluding the price. Through a literature review, the author also investigates the effect of the hyperlipidemic state on cancer, focusing on carcinoma and vascular endothelial growth factor (VEGF), as well as the RAS-RAF-MEK pathway, which is a target for tyrosine kinase inhibitors, in order to reveal the molecular mechanism of chlorambucil metronomic chemotherapy. Also, the author investigates the molecular pathway of carcinoma development in human hyperlipidemia patients through single-cell RNA sequence analysis using open public data, and discusses the molecular action of chlorambucil. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

66 pages, 2939 KB  
Review
Mechanistic Insights and Clinical Implications of ELK1 in Solid Tumors: A Narrative Review
by Georgios Kalampounias, Theodosia Androutsopoulou and Panagiotis Katsoris
Cells 2025, 14(16), 1257; https://doi.org/10.3390/cells14161257 - 14 Aug 2025
Viewed by 548
Abstract
ELK1 is a Transcription factor (TF) belonging to the ETS-domain TF family, mainly activated via RAS-RAF-MEK-ERK signaling. As a nethermost pathway molecule, ELK1 binds to Serum-response elements (SREs) and directly regulates the transcription of Immediate early genes (IEGs) including FOS and EGR1. [...] Read more.
ELK1 is a Transcription factor (TF) belonging to the ETS-domain TF family, mainly activated via RAS-RAF-MEK-ERK signaling. As a nethermost pathway molecule, ELK1 binds to Serum-response elements (SREs) and directly regulates the transcription of Immediate early genes (IEGs) including FOS and EGR1. Due to ELK1’s influence on key cellular processes such as proliferation, migration, apoptosis evasion, and Epithelial-to-mesenchymal transition (EMT), its role as a key contributor to tumorigenesis is emerging. In recent years, elevated expression and/or activation of ELK1 has been reported in various malignancies, including lung, breast, prostate, colorectal, blood, gastric, liver, cervical, thyroid and ovarian cancer. ELK1 acts primarily through direct DNA binding but also through interaction with other oncogenes, noncoding RNA molecules, TFs, and upstream kinases (other than ERK1/2), thus participating in diverse axes of transcriptional regulation. Its crucial role in IEG expression has been particularly implicated in cancer progression, metastasis, and drug resistance. Owing to its role in multiple cellular functions and its subsequent oncogenic potential, further elucidation of intracellular ELK1 interactions is of paramount importance. This review aims to summarize current evidence on ELK1’s involvement in solid tumors, dissect reported mechanistic roles, and highlight recent insights that could fuel future ventures of high translational interest. Full article
(This article belongs to the Special Issue Cell Migration and Invasion)
Show Figures

Graphical abstract

20 pages, 1126 KB  
Review
Review of the Role of TRAF7 in Brain Endothelial Integrity and Cerebrovascular Aging
by Jennifer Ihuoma, Sherwin Tavakol, Sharon Negri, Cade Ballard, Khanh Phan, Albert Orock, Zeke Reyff, Madison Milan, Eva Troyano-Rodriguez, Rakesh Rudraboina, Anna Csiszar, Anthony C. Johnson, Ian F. Dunn and Stefano Tarantini
Life 2025, 15(8), 1280; https://doi.org/10.3390/life15081280 - 12 Aug 2025
Viewed by 442
Abstract
Tumor necrosis factor (TNF) receptor-associated factor 7 (TRAF7) is a signal transducer in the TNF receptor superfamily. TRAF7 is unique among its superfamily in that it does not contain a TRAF-C domain but does contain WD-40 domains. TRAF7 interacts with mitogen-activated protein kinases [...] Read more.
Tumor necrosis factor (TNF) receptor-associated factor 7 (TRAF7) is a signal transducer in the TNF receptor superfamily. TRAF7 is unique among its superfamily in that it does not contain a TRAF-C domain but does contain WD-40 domains. TRAF7 interacts with mitogen-activated protein kinases (MAPK), which are known regulators of inflammation and shear stress response. Notably, these molecular interactions have profound implications for the function of brain endothelial cells (ECs), which are pivotal for sustaining the integrity of the blood–brain barrier (BBB), orchestrating neurovascular coupling (NVC), and modulating the vascular architecture. By directly influencing MAPK signaling pathways, particularly the shear stress-responsive MAPK kinase kinase 3 (MEKK3)–MAPK kinase 5 (MEK5)–extracellular-regulated protein kinase 5 (ERK5) cascade, TRAF7 contributes to vascular homeostasis, as exemplified by its role in phosphorylating ERK5. Such molecular events underpin the capacity of brain ECs to regulate substance exchange, adjust blood flow in response to neural activity, and maintain efficient cerebral perfusion, all of which are essential for preserving brain health and cognitive performance. By synthesizing the current evidence regarding TRAF7’s molecular functions and its impact on brain endothelial integrity, cerebrovascular aging, and exploring implications for therapeutic strategies targeting vascular dysfunction in the aging brain, this review fills a crucial gap in the literature. Given the limited number of original studies directly addressing these contexts, the review will integrate broader insights from related literature to provide a foundational overview for future research in this developing field. The culmination of this literature will provide a rationale for the development of novel TRAF7-targeted therapies to restore vascular integrity in the context of aging, which could maintain cognitive health. Although TRAF7 has been implicated in regulating endothelial permeability during inflammation, its precise functions in brain ECs and the subsequent effects on cerebrovascular structure and cognitive function remain to be fully elucidated. Full article
Show Figures

Figure 1

26 pages, 31544 KB  
Article
Changes in Melanoma Cell Morphology Following Inhibition of Cell Invasion by Third-Generation mTOR Kinase Inhibitors
by Dorota Ciołczyk-Wierzbicka, Martyna Sikorska-Duplicka, Marta Zarzycka, Grzegorz Zemanek and Karol Wierzbicki
Int. J. Mol. Sci. 2025, 26(16), 7770; https://doi.org/10.3390/ijms26167770 - 12 Aug 2025
Viewed by 254
Abstract
Melanoma is one of the most invasive skin cancers with the highest mortality risk. The PI3K/AKT/mTOR signaling pathways are a key regulatory point related to growth factors and involved in the cell’s energy metabolism. They are responsible for cell life processes such as [...] Read more.
Melanoma is one of the most invasive skin cancers with the highest mortality risk. The PI3K/AKT/mTOR signaling pathways are a key regulatory point related to growth factors and involved in the cell’s energy metabolism. They are responsible for cell life processes such as growth, proliferation, invasion, survival, apoptosis, autophagy, and angiogenesis. The studies undertaken concerned the effect of protein kinase inhibitors involved in the signaling pathways of AKT, MEK, and mTOR kinases on the expression of cytoskeletal and extracellular matrix proteins, invasion process, and activities of the matrix metalloproteinases (MMPs): MMP-2 and MMP-9 in melanoma cells. The study used mTOR kinase inhibitors: Everolimus and Torkinib; dual PI3K/mTOR inhibitors BEZ-235 and Omipalisib; and the mTORC1/2 inhibitor OSI-027. These compounds were used both as monotherapy and in combination with the MEK1/2 inhibitor AS-703026. mTOR kinase inhibitors, especially the third generation in combination with the MEK 1/2 kinase inhibitor AS-703026, significantly inhibited invasion and metalloproteinases (MMPs) activity in melanoma cell lines. The inhibition of the cell invasion process was accompanied by a significant change in the expression of proteins associated with EMT. The morphology of cells also changed significantly: their thickness, volume, roughness, convexity of shape, and irregularity, which may be a good diagnostic and prognostic factor for the response to treatment. Our studies to date on the effect of three generations of mTOR kinase inhibitors on the inhibition of the invasion process, the activation of apoptosis, and the reduction in cell proliferation suggest that they may be an important target for anticancer therapy. Full article
(This article belongs to the Special Issue Melanoma: From Molecular Mechanisms to Therapeutics)
Show Figures

Graphical abstract

22 pages, 3957 KB  
Article
Evaluating Potential Therapeutic Targets and Drug Repurposing Based on the Esophageal Cancer Subtypes
by Jongchan Oh, Jongwon Han and Heeyoung Lee
Pharmaceuticals 2025, 18(8), 1181; https://doi.org/10.3390/ph18081181 - 11 Aug 2025
Viewed by 448
Abstract
Background: Esophageal cancer (EC), including esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), remains a lethal malignancy with limited molecularly tailored treatment options. Due to substantial histologic and transcriptomic differences between subtypes, therapeutic responses often vary, underscoring the need for subtype-stratified analysis [...] Read more.
Background: Esophageal cancer (EC), including esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC), remains a lethal malignancy with limited molecularly tailored treatment options. Due to substantial histologic and transcriptomic differences between subtypes, therapeutic responses often vary, underscoring the need for subtype-stratified analysis and precision drug discovery. Methods: We integrated transcriptomic data from GEO and TCGA to identify differentially expressed genes (DEGs) specific to EAC, ESCC, and their shared profiles. Functional enrichment (GO, KEGG) and protein–protein interaction (PPI) network analyses were conducted to extract hub genes using DAVID, STRING, and Cytoscape. Survival associations were evaluated using TCGA-ESCA and UALCAN. Drug repurposing was performed using L1000FWD, L1000CDS2, and SigCom LINCS. Results: We identified 79, 59, and 17 hub genes in the DEG-EAC, DEG-ESCC, and DEG-EAC&ESCC datasets, respectively. In EAC, 16 novel hub genes including SCARB1, SERPINH1, and DSC2 were discovered, which had not been previously implicated in this subtype. These genes were significantly enriched in pathways related to extracellular matrix (ECM) remodeling and epithelial structure. In addition, shared hub genes across EAC and ESCC—such as COL1A1, SPARC, and MMP1—were enriched in ECM organization and cell adhesion processes, highlighting convergent tumor–stroma interactions. Drug repositioning analysis consistently prioritized MEK inhibitors, trametinib and selumetinib, as potential therapeutic candidates across all DEG datasets. Conclusions: This study presents a comprehensive, subtype-stratified transcriptomic framework for EC, identifying both unique and shared hub genes with potential functional relevance to ECM dynamics. Our findings suggest that ECM remodelers may serve as therapeutic targets, and highlight MEK inhibition as a promising, yet exploratory, repurposing strategy. While these results offer a molecular foundation for future precision oncology efforts in EC, further validation through proteomic analysis, functional studies, and clinical evaluation is warranted. Full article
(This article belongs to the Special Issue Recent Advances in Cancer Diagnosis and Therapy)
Show Figures

Graphical abstract

37 pages, 1914 KB  
Review
Mechanistic Insights into the Pathogenesis of Polycystic Kidney Disease
by Qasim Al-orjani, Lubna A. Alshriem, Gillian Gallagher, Raghad Buqaileh, Neela Azizi and Wissam AbouAlaiwi
Cells 2025, 14(15), 1203; https://doi.org/10.3390/cells14151203 - 5 Aug 2025
Viewed by 533
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and [...] Read more.
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a systemic ciliopathy resulting from loss-of-function mutations in the PKD1 and PKD2 genes, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 and PC2 regulate mechanosensation, calcium signaling, and key pathways controlling tubular epithelial structure and function. Loss of PC1/PC2 disrupts calcium homeostasis, elevates cAMP, and activates proliferative cascades such as PKA–B-Raf–MEK–ERK, mTOR, and Wnt, driving cystogenesis via epithelial proliferation, impaired apoptosis, fluid secretion, and fibrosis. Recent evidence also implicates novel signaling axes in ADPKD progression including, the Hippo pathway, where dysregulated YAP/TAZ activity enhances c-Myc-mediated proliferation; the stimulator of interferon genes (STING) pathway, which is activated by mitochondrial DNA release and linked to NF-κB-driven inflammation and fibrosis; and the TWEAK/Fn14 pathway, which mediates pro-inflammatory and pro-apoptotic responses via ERK and NF-κB activation in tubular cells. Mitochondrial dysfunction, oxidative stress, and maladaptive extracellular matrix remodeling further exacerbate disease progression. A refined understanding of ADPKD’s complex signaling networks provides a foundation for precision medicine and next-generation therapeutics. This review gathers recent molecular insights and highlights both established and emerging targets to guide targeted treatment strategies in ADPKD. Full article
Show Figures

Figure 1

12 pages, 2241 KB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 - 1 Aug 2025
Viewed by 311
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

16 pages, 14493 KB  
Article
Identification of Drug Repurposing Candidates for Coxsackievirus B3 Infection in iPSC-Derived Brain-like Endothelial Cells
by Jacob F. Wood, John M. Vergis, Ali S. Imami, William G. Ryan, Jon J. Sin, Brandon J. Kim, Isaac T. Schiefer and Robert E. McCullumsmith
Int. J. Mol. Sci. 2025, 26(15), 7041; https://doi.org/10.3390/ijms26157041 - 22 Jul 2025
Viewed by 334
Abstract
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters [...] Read more.
The enterovirus Coxsackievirus B3 causes a range of serious health problems, including aseptic meningitis, myocarditis, and pancreatitis. Currently, Coxsackievirus B3 has no targeted antiviral treatments or vaccines, leaving supportive care as the primary management option. Understanding how Coxsackievirus B3 interacts with and alters the blood–brain barrier may help identify new therapies to combat this often-devastating infection. We reanalyzed a previously published RNA sequencing dataset for Coxsackievirus B3-infected human-induced pluripotent stem-cell-derived brain endothelial cells (iBECs) to examine how Coxsackievirus B3 altered mRNA expression. By integrating GSEA, EnrichR, and iLINCs-based perturbagen analysis, we present a novel, systems-level approach to uncover potential drug repurposing candidates for CVB3 infection. We found dynamic changes in host transcriptomic response to Coxsackievirus B3 infection at 2- and 5-day infection time points. Downregulated pathways included ribosomal biogenesis and protein synthesis, while upregulated pathways included a defense response to viruses, and interferon production. Using iLINCs transcriptomic analysis, MEK, PDGFR, and VEGF inhibitors were identified as possible novel antiviral therapeutics. Our findings further elucidate Coxsackievirus B3-associated pathways in (iBECs) and highlight potential drug repurposing candidates, including pelitinib and neratinib, which may disrupt Coxsackievirus B3 pathology at the blood–brain barrier (BBB). Full article
Show Figures

Figure 1

20 pages, 1400 KB  
Review
Novel Therapeutics and the Path Toward Effective Immunotherapy in Malignant Peripheral Nerve Sheath Tumors
by Joshua J. Lingo, Elizabeth C. Elias and Dawn E. Quelle
Cancers 2025, 17(14), 2410; https://doi.org/10.3390/cancers17142410 - 21 Jul 2025
Viewed by 717
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor [...] Read more.
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are a deadly subtype of soft tissue sarcoma for which effective therapeutic options are lacking. Currently, the best treatment for MPNSTs is complete surgical resection with wide negative margins, but this is often complicated by the tumor size and location and/or the presence of metastases. Radiation or chemotherapy may be combined with surgery, but patient responses are poor. Targeted treatments, including small-molecule inhibitors of oncogenic proteins such as mitogen-activated protein kinase kinase (MEK), cyclin-dependent kinases 4 and 6 (CDK4/6), and Src-homology 2 domain-containing phosphatase 2 (SHP2), are promising therapeutics for MPNSTs, especially when combined together, but they have yet to gain approval. Immunotherapeutic approaches have been revolutionary for the treatment of some other cancers, but their utility as single agents in sarcoma is limited and not approved for MPNSTs. The immunosuppressive niche of MPNSTs is thought to confer inherent treatment resistance, particularly to immunotherapies. Remodeling an inherently “cold” tumor microenvironment into a “hot” immune milieu to bolster the anti-tumor activity of immunotherapies is of great interest throughout the cancer community. This review focuses on novel therapeutics that target dysregulated factors and pathways in MPNSTs, as well as different types of immunotherapies currently under investigation for this disease. We also consider how certain therapeutics may be combined to remodel the MPNST immune microenvironment and thereby generate a durable anti-tumor immune response to immunotherapy. Full article
(This article belongs to the Special Issue Next-Generation Cancer Therapies)
Show Figures

Figure 1

12 pages, 1025 KB  
Article
Inhibitory Effects of Vandetanib on Catecholamine Synthesis in Rat Pheochromocytoma PC12 Cells
by Yoshihiko Itoh, Kenichi Inagaki, Tomohiro Terasaka, Eisaku Morimoto, Takahiro Ishii, Kimitomo Yamaoka, Satoshi Fujisawa and Jun Wada
Int. J. Mol. Sci. 2025, 26(14), 6927; https://doi.org/10.3390/ijms26146927 - 18 Jul 2025
Viewed by 435
Abstract
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on [...] Read more.
Gain-of-function gene alterations in rearranged during transfection (RET), a receptor tyrosine kinase, are observed in both sporadic and hereditary medullary thyroid cancers (MTCs) and pheochromocytomas and paragangliomas (PPGLs). Several tyrosine kinase inhibitors (TKIs) that target RET have been proven to be effective on MTCs and PCCs. Recently, TKIs, namely, sunitinib and selpercatinib, which were clinically used to target PPGLs, have been reported to decrease catecholamine levels without reducing tumor size. Our clinical case of metastatic medullary thyroid cancer, which is associated with RET mutations undergoing treatment with vandetanib, also suggests that vandetanib can decrease catecholamine levels. Therefore, we investigated the effect of vandetanib, a representative multi-targeted TKI for RET-related MTC, on cell proliferation and catecholamine synthesis in rat pheochromocytoma PC12 cells. Vandetanib reduced viable cells in a concentration-dependent manner. The dopamine and noradrenaline levels of the cell lysate were reduced in a concentration-dependent manner. They also decreased more prominently at lower concentrations of vandetanib compared to the inhibition of cell proliferation. The RNA knockdown study of Ret revealed that this inhibitory effect on catecholamine synthesis is mainly mediated by the suppression of RET signaling. Next, we focused on two signaling pathways downstream of RET, namely, ERK and AKT signaling. Treatment with vandetanib reduced both ERK and AKT phosphorylation in PC12 cells. Moreover, both an MEK inhibitor U0126 and a PI3K/AKT inhibitor LY294002 suppressed catecholamine synthesis without decreasing viable cells. This study in rat pheochromocytoma PC12 cells reveals the direct inhibitory effects of vandetanib on catecholamine synthesis via the suppression of RET-ERK and RET-AKT signaling. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

19 pages, 1049 KB  
Review
MEK Inhibition in Glioblastoma: Current Perspectives and Future Directions
by Adam Shapira Levy, Jean-Paul Bryant, David Matichak, Shumpei Onishi and Yeshavanth Kumar Banasavadi-Siddegowda
Int. J. Mol. Sci. 2025, 26(14), 6875; https://doi.org/10.3390/ijms26146875 - 17 Jul 2025
Viewed by 552
Abstract
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, [...] Read more.
The Mitogen-activated protein kinase kinase (MEK) protein family has dual-specificity protein kinases with a myriad of cellular functions that include but are not limited to cell survival, cell division, immunologic response, angiogenesis, and cellular senescence. MEK is crucial in the MAPK signaling pathway, regulating different organ systems, including the CNS. Increased activation and dysregulation of the MEK pathway is reportedly observed in 30% of all malignancies. The diversity of MEK renders it a prime target for inhibition in treating cancer. MEK inhibition has been studied in the context of melanoma, non-small cell lung cancer, breast cancer, and colorectal cancer, among others. The standard treatment for glioblastoma (resection, temozolomide, and radiation) remains relatively futile, which warrants alternative treatment options. Therefore, MEK inhibition has garnered more attention in recent years as investigators have explored its role in treating the most aggressive and most common primary brain tumor, glioblastoma. MEK inhibitors have shown efficacy in pre-clinical investigations as well as some promise in clinical trials which have demonstrated improved overall and progression-free survival. This underscores the potential of MEK inhibition in glioblastoma therapy and represents an area that likely warrants further research. However, there are few comprehensive and unifying reviews discussing the current state of MEK inhibition in glioblastoma therapy. We begin this review by detailing the normal function of MEK as it pertains to the CNS. We then compiled relevant pre-clinical and clinical studies to investigate recent research discussing the role of MEK inhibition in glioblastoma therapy. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

Back to TopTop