Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,003)

Search Parameters:
Keywords = MFC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1948 KB  
Article
Integration of Next-Generation Sequencing in Measurable Residual Disease Monitoring in Acute Myeloid Leukemia and Myelodysplastic Neoplasm
by Elena Crisà, Irene Dogliotti, Giuseppe Lia, Marco Cerrano, Ernesta Audisio, Giuseppe Lanzarone, Lucia Brunello, Daniela Caravelli, Fabrizio Carnevale Schianca, Enrico Berrino, Sara Erika Bellomo, Alice Bartolini, Ludovica Riera, Paola Francia di Celle, Gianluca Gaidano, Monia Lunghi, Luisa Giaccone and Benedetto Bruno
Cancers 2025, 17(17), 2874; https://doi.org/10.3390/cancers17172874 - 1 Sep 2025
Viewed by 157
Abstract
Background/Objectives. Recent evidence underscores the prognostic and classificatory relevance of somatic mutations in myelodysplastic neoplasms (MDSs) and acute myeloid leukemia (AML). Methods. This prospective study assessed gene mutation dynamics via next-generation sequencing (NGS) in 84 MDS/AML patients treated with intensive chemotherapy or hypomethylating [...] Read more.
Background/Objectives. Recent evidence underscores the prognostic and classificatory relevance of somatic mutations in myelodysplastic neoplasms (MDSs) and acute myeloid leukemia (AML). Methods. This prospective study assessed gene mutation dynamics via next-generation sequencing (NGS) in 84 MDS/AML patients treated with intensive chemotherapy or hypomethylating agents plus venetoclax. Results. At diagnosis, 95% had somatic mutations detected by NGS, while only 29% had a measurable residual disease (MRD) marker with qPCRs. NGS at complete remission (CR) was performed in 56/71 patients who achieved CR; 59% had persisting mutations, mostly in DNMT3A, TET2, and ASXL1 (DTA mutations). Mutations’ persistence in CR was linked to a shorter relapse-free survival (RFS; median 8 months vs. not reached, HR 4.41, 95% CI 1.69–11.49; p = 0.002) and overall survival (OS; 2-year OS: 51.5% vs. 88%, HR 4.02, 95% CI 1.39–11.65; p = 0.001). Combining NGS and multiparameter flow cytometry (MFC) for MRD detection, we divided patients into three groups with distinct RFS (NGS−/MFC−, NGS−/MFC+, or NGS+/MFC− and NGS+/MFC+), with double-negative patients displaying the best RFS (p < 0.001). In the multivariate analysis, NGS and MFC MRD+ were independent predictors of RFS. Conclusions. This real-world study confirms the added prognostic role of NGS in MRD detection on RFS, particularly when combined with MFC. This approach may improve risk stratification and guide treatment decisions. Full article
(This article belongs to the Section Clinical Research of Cancer)
Show Figures

Figure 1

30 pages, 13230 KB  
Article
Harmonization of Gaofen-1/WFV Imagery with the HLS Dataset Using Conditional Generative Adversarial Networks
by Haseeb Ur Rehman, Guanhua Zhou, Franz Pablo Antezana Lopez and Hongzhi Jiang
Remote Sens. 2025, 17(17), 2995; https://doi.org/10.3390/rs17172995 - 28 Aug 2025
Viewed by 269
Abstract
The harmonized multi-sensor satellite data assists users by providing seamless analysis-ready data with enhanced temporal resolution. The Harmonized Landsat Sentinel (HLS) product has gained popularity due to the seamless integration of Landsat OLI and Sentinel-2 MSI, achieving a temporal resolution of 2.8 to [...] Read more.
The harmonized multi-sensor satellite data assists users by providing seamless analysis-ready data with enhanced temporal resolution. The Harmonized Landsat Sentinel (HLS) product has gained popularity due to the seamless integration of Landsat OLI and Sentinel-2 MSI, achieving a temporal resolution of 2.8 to 3.5 days. However, applications that require monitoring intervals of less than three days or cloudy data can limit the usage of HLS data. Gaofen-1 (GF-1) Wide Field of View (WFV) data provides the capacity further to enhance the data availability by harmonization with HLS. In this study, GF-1/WFV data is harmonized with HLS by employing deep learning-based conditional Generative Adversarial Networks (cGANs). The harmonized WFV data with HLS provides an average temporal resolution of 1.5 days (ranging from 1.2 to 1.7 days), whereas the temporal resolution of HLS varies from 2.8 to 3.5 days. This enhanced temporal resolution will benefit applications that require frequent monitoring. Various processes are employed in HLS to achieve seamless products from the Operational Land Imager (OLI) and Multispectral Imager (MSI). This study applies 6S atmospheric correction to obtain GF-1/WFV surface reflectance data, employs MFC cloud masking, resamples the data to 30 m, and performs geographical correction using AROP relative to HLS data, to align preprocessing with HLS workflows. Harmonization is achieved without using BRDF normalization and bandpass adjustment like in the HLS workflows; instead, cGAN learns cross-sensor reflectance mapping by utilizing a U-Net generator and a patchGAN discriminator. The harmonized GF-1/WFV data were compared to the reference HLS data using various quality indices, including SSIM, MBE, and RMSD, across 126 cloud-free validation tiles covering various land covers and seasons. Band-wise scatter plots, histograms, and visual image color quality were compared. All these indices, including the Sobel filter, histograms, and visual comparisons, indicated that the proposed method has effectively reduced the spectral discrepancies between the GF-1/WFV and HLS data. Full article
Show Figures

Figure 1

16 pages, 2387 KB  
Article
Reduction in ARGs and Mobile Genetic Elements Using 2-Bromoethane Sulfonate in an MFC-Powered Fenton System
by Weiye Wang, Jian Wei, Zhuang Guo, Xiaodong Bai and Yonghui Song
Molecules 2025, 30(17), 3502; https://doi.org/10.3390/molecules30173502 - 26 Aug 2025
Viewed by 824
Abstract
The integration of an MFC-powered Fenton (MFC-Fenton) system into the traditional anaerobic composting process can promote excess dewatered sludge (ES) decomposition. However, the antibiotic resistance gene (ARG) profiles in ES treated by MFC-Fenton systems remain poorly understood; in addition, the effect of adding [...] Read more.
The integration of an MFC-powered Fenton (MFC-Fenton) system into the traditional anaerobic composting process can promote excess dewatered sludge (ES) decomposition. However, the antibiotic resistance gene (ARG) profiles in ES treated by MFC-Fenton systems remain poorly understood; in addition, the effect of adding 2-bromoethane sulfonate (BES, a methane inhibitor) during ES treatment using an MFC-Fenton system on ARG levels is largely unexplored. The present work focused on investigating the effects of BES and bioelectrochemical processes on ARG and MGE abundances and unraveling the ARG attenuation mechanism. According to our findings, adding BES promoted ARG reduction in ES in an MFC-Fenton system. The average ARG levels in the MFC-Fenton samples containing high BES contents (0.4 or 0.5 g BES/g VSS) markedly declined relative to those in samples containing lower BES levels. Moreover, macrolide transporter ATP-binding protein, macrolide-efflux protein, and macB levels markedly decreased as BES levels increased. BES supplementation and bioelectrochemical assistance were crucial for altering the ARG composition in the MFC-Fenton system. Changes in the microbial community composition had the greatest effect on the variation in ARG composition. Furthermore, the Actinobacteria and Firmicutes levels accounted for 52.8% of the overall ARG variation. Among MGEs, plasmids, insertion sequences, and integrons showed lower levels within the sludge metagenomes. Typically, sulI, sulII, tetG, and bla TEM levels were positively correlated with metal resistance genes (MRGs), and their levels markedly declined following the MFC-Fenton process. Thus, the collective evidence indicates that BES synergizes with bioelectrogenesis to reduce ARG abundance. Full article
(This article belongs to the Special Issue Advanced Oxidation/Reduction Processes in Water Treatment)
Show Figures

Figure 1

14 pages, 4168 KB  
Article
Manufacturing and Recycling of 3D-Printed All-Polymer Composites
by Itsari Phuangmali, Yao Xu, Leyu Lin and Alois K. Schlarb
Recycling 2025, 10(5), 168; https://doi.org/10.3390/recycling10050168 - 26 Aug 2025
Viewed by 417
Abstract
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, [...] Read more.
The reinforcement of polymers with carbon or glass fibers is the reason for their incredible success as ideal lightweight construction materials. However, one challenge with these materials is their recyclability. True recycling, meaning achieving the same performance level as virgin material, is impossible, especially with mechanical recycling processes, because the reinforcement structure is destroyed. Additionally, thermoplastics undergo molecular degradation and changes in the properties of the materials. Therefore, polymer fiber-reinforced plastics may have an advantage here, as polymer fibers are much more flexible than glass or carbon fibers. We investigated the production and recyclability of microfibrillar composites (MFCs) made of polypropylene (PP) and polyethylene terephthalate (PET). The samples were produced using extrusion-based 3D printing with different parameters, and their morphology and mechanical properties were examined. The samples were crushed, and the residue was fed back into the production line. The process was repeated with the samples produced from regenerate. The results prove that the printing process can be controlled to ensure the presence of fibers in samples made from recycled material. However, it is important to note that the mechanical properties decrease with each additional processing cycle. The choice of manufacturing parameters, especially in 3D printing, is crucial for achieving good properties. Full article
Show Figures

Figure 1

24 pages, 2476 KB  
Article
Electrochemical Monitoring of Bisphenol A Degradation in Leachate by Trichoderma harzianum Using a Sensitive Sensor of Type SPE in Microbial Fuel Cells
by Serge Mbokou Foukmeniok, Jean-Philippe Theodore Silga, Adil Ait Yazza, Honorine Hortense Bougna Tchoumi, Malak Dia, Maxime Pontie and Vladimir Urošević
Chemosensors 2025, 13(9), 317; https://doi.org/10.3390/chemosensors13090317 - 22 Aug 2025
Viewed by 437
Abstract
This study reports the development of a simple and sensitive electrochemical sensor based on activated screen-printed electrodes modified by electrodeposition of nickel(II) tetrasulfonated phthalocyanine film (poly-NiTSPc), denoted SPE-A-polyNiTSPc, for the direct determination of BPA in landfill leachate samples. BPA concentrations in raw landfill [...] Read more.
This study reports the development of a simple and sensitive electrochemical sensor based on activated screen-printed electrodes modified by electrodeposition of nickel(II) tetrasulfonated phthalocyanine film (poly-NiTSPc), denoted SPE-A-polyNiTSPc, for the direct determination of BPA in landfill leachate samples. BPA concentrations in raw landfill leachate solutions and in residual solutions after a reverse osmosis (RO) treatment were determined, using differential pulse voltammetry (DPV) on SPE-A-polyNiTSPc, to be 29.7 mgL−1 and 6.4 µgL−1, respectively. The obtained BPA concentrations were very close to those found by the accredited lab in the same samples, which were 29.6 mgL−1 and 6.0 µgL−1, respectively. The applicability of SPE-A-polyNiTSPc for BPA bioremediation was investigated in landfill leachate samples using Trichoderma harzianum fungus in a microbial fuel cell (MFC), where the kinetics data were modeled. The first results showed an IC50 of 175 mgL−1 BPA, indicating that the inhibition factor could be negligeable for MFC experiments at 30 mgL−1 BPA. The biodegradation kinetics was found to be of first order, with a kinetic constant of 0.795 h−1 at 22 °C and a half-degradation time of 0.872 h for an initial concentration of 29 mgL−1. The developed MFC displayed higher stability, offering a maximum power of 100 mWm−3. Full article
(This article belongs to the Special Issue Nanomaterial-Based Sensors: Design, Development and Applications)
Show Figures

Figure 1

15 pages, 3387 KB  
Article
Sodium Cuminate Inhibits the Mycelial Growth of Penicillium digitatum by Inducing Oxidative Stress and Damaging the Cell Membrane
by Mingchen Yang, Yonghua Zhang, Xiaoli Tan, Lu Li, Qiuli OuYang and Nengguo Tao
J. Fungi 2025, 11(9), 612; https://doi.org/10.3390/jof11090612 - 22 Aug 2025
Viewed by 395
Abstract
Green mold formed by Penicillium digitatum is a major disease that limits the yield and overall value of postharvest citrus fruits. The antifungal activity of sodium cuminate (SC) against P. digitatum and the corresponding mechanism were explored in this research. The minimal inhibitory [...] Read more.
Green mold formed by Penicillium digitatum is a major disease that limits the yield and overall value of postharvest citrus fruits. The antifungal activity of sodium cuminate (SC) against P. digitatum and the corresponding mechanism were explored in this research. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) of SC against P. digitatum were 0.4 and 0.8 g L−1, respectively. SC (8× MFC) reduced the incidence of disease in Ponkan fruits without compromising their quality. The results of CFW staining and extracellular alkaline phosphatase assays revealed that 1/2MIC SC for 30 min had no impact on the cell wall integrity of P. digitatum. In contrast, 1/2MIC SC apparently destroyed cell membrane integrity, as shown by the increase in the content of reactive oxygen species (ROS), malondialdehyde, and H2O2. The addition of exogenous cysteine (Cys) or diphenyleneiodonium chloride (DPI) significantly mitigated the cytotoxic effects of SC. At the same time, mitochondrial membrane potential was significantly decreased by 1/2MIC SC, and the addition of exogenous Cys or DPI restored it to normal levels. In summary, the antifungal capacity of SC might be attributable to membrane damage in P. digitatum caused by oxidative stress. Full article
Show Figures

Figure 1

16 pages, 2105 KB  
Article
Enhancing Electron Transfer Efficiency in Microbial Fuel Cells Through Gold Nanoparticle Modification of Saccharomyces cerevisiae
by Teresė Kondrotaitė-Intė, Antanas Zinovičius, Domas Pirštelis and Inga Morkvėnaitė
Microorganisms 2025, 13(8), 1938; https://doi.org/10.3390/microorganisms13081938 - 20 Aug 2025
Viewed by 389
Abstract
This study investigates microbial fuel cell (MFC) performance through the modification of Saccharomyces cerevisiae with gold nanoparticles (AuNPs) and polypyrrole (PPy). The yeast/AuNP-modified electrodes generated the highest median current of 2.57 nA, significantly outperforming the yeast/PPy-modified (0.82 nA) electrodes. Power density measurements further [...] Read more.
This study investigates microbial fuel cell (MFC) performance through the modification of Saccharomyces cerevisiae with gold nanoparticles (AuNPs) and polypyrrole (PPy). The yeast/AuNP-modified electrodes generated the highest median current of 2.57 nA, significantly outperforming the yeast/PPy-modified (0.82 nA) electrodes. Power density measurements further confirmed the superior performance of the yeast/AuNP-modified electrodes, showcasing a notable improvement in current densities and power outputs. Yeast/AuNP-modified graphite electrodes produced a higher power density of 22.8 mW/m2, while exhibiting a lower current density compared to electrodes modified solely with yeast, which achieved a power density of 5.7 mW/m2. These findings highlight the potential of AuNPs in significantly enhancing the electrochemical performance of yeast-based MFCs, providing a promising approach for the development of more efficient bioelectrochemical systems. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

17 pages, 1142 KB  
Article
Effect of Hydraulic Retention Time on Municipal Wastewater Treatment Using a Membraneless Single-Chamber Microbial Fuel Cell
by Brenda Verónica Borrego-Limón, Silvia Yudith Martínez-Amador, Miguel Ángel Pérez-Rodríguez, Pedro Pérez-Rodríguez, Alfredo Valentín Reyes-Acosta, Leopoldo Javier Ríos-González and José Antonio Rodríguez-De la Garza
Processes 2025, 13(8), 2564; https://doi.org/10.3390/pr13082564 - 14 Aug 2025
Viewed by 347
Abstract
Microbial fuel cells (MFCs) can have high pollutant removal efficiencies and generate electricity; however, the use of selective membranes represents a considerable expense. In this investigation, the performance of a membraneless MFC was evaluated at different hydraulic retention times (HRTs) of 12, 24, [...] Read more.
Microbial fuel cells (MFCs) can have high pollutant removal efficiencies and generate electricity; however, the use of selective membranes represents a considerable expense. In this investigation, the performance of a membraneless MFC was evaluated at different hydraulic retention times (HRTs) of 12, 24, 36, and 48 h. The chemical oxygen demand removal efficiencies (CODREs) were 93.5, 90.9, 87.3, and 85.4%, and the biochemical oxygen demand (BODRE) values were 94.5, 91.5, 88.9, and 85.5 at HRTs of 48, 36, 24, and 12 h, respectively. Lower concentrations of solids (suspended solids and total dissolved solids), total nitrogen, phosphorus, fats and oils, and microbiological contamination (helminth eggs and fecal coliforms) were detected when operating the system at a 48 h HRT. At an HRT of 12 h, no decrease in electrical conductivity was detected, whereas at 48 h, it decreased by 19.6%. The oxidation–reduction potential and OCV increased at longer HRTs. The microorganisms detected at the anode were Achromobacter denitrificans, Achromobacter anxifer, and Pseudomonas aeruginosa. The 48 h HRT improved the chemical, physical, and microbiological quality of the municipal wastewater, favoring voltage generation. Full article
Show Figures

Figure 1

10 pages, 1835 KB  
Article
Evaluation of a Pilot-Scale Water Treatment System with Passive Aerated, Membraneless Microbial Fuel Cell
by Zabdiel A. Juarez, Víctor Ramírez, Carlos Hernández-Benítez, Luis A. Godínez, Irma Robles Gutierrez and Francisco J. Rodríguez-Valadez
Catalysts 2025, 15(8), 765; https://doi.org/10.3390/catal15080765 - 9 Aug 2025
Viewed by 559
Abstract
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive [...] Read more.
Wastewater treatment has become a priority in the global attempt to address environmental pollution. Conventional wastewater treatment processes are often limited by their high energy consumption, so it is necessary to develop new technologies. This work shows the results obtained using a passive aerated membraneless microbial fuel cell (PAML-MFC) system consisting of 10 individual units, designed to treat 1000 L/day of real wastewater, using granular activated carbon anodes and cathodes. The pilot-scale water treatment system under study combines design and materials to result in low-cost operation. After 300 days of treating real wastewater originally characterized by a chemical oxygen demand (COD) value of 500 mg/L on average, it was found that the PAML-MFC under study removed 60 to 80% of the COD contained in real wastewater. Under these conditions, the individual MFCs reached an average power density below 1 mW/m3. Full article
Show Figures

Figure 1

12 pages, 2679 KB  
Article
Polypyrrole-Modified Saccharomyces cerevisiae Used in Microbial Fuel Cell
by Kasparas Kižys, Domas Pirštelis, Ingrida Bružaitė and Inga Morkvėnaitė
Biosensors 2025, 15(8), 519; https://doi.org/10.3390/bios15080519 - 9 Aug 2025
Viewed by 413
Abstract
Microbial fuel cells (MFCs) are one of the contributors to the novel sustainable energy generation from organic waste. However, the application of MFCs is limited due to the slow charge transfer between cells and electrodes. This problem can be solved by modifying cells [...] Read more.
Microbial fuel cells (MFCs) are one of the contributors to the novel sustainable energy generation from organic waste. However, the application of MFCs is limited due to the slow charge transfer between cells and electrodes. This problem can be solved by modifying cells with conductive polymers, such as polypyrrole (PPy). We investigated the viability and electroactivity of modified cells at five different pyrrole concentrations, namely 8, 25, 50, 100, and 200 mM. The 100 mM concentration of PPy solution had the highest impact on yeast cells’ proliferation and growth, with the CFU/mL of PPy-treated yeast cells being 0.6 × 107 ± 5 × 10−2. The power density of the constructed MFC was evaluated by using an external load. The MFCs were analyzed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Although CV results with different pyrrole concentrations were similar, DPV indicated that yeast modification with 50 mM pyrrole resulted in the most significant current density, which may be attributed to an increase in charge transfer due to the conductive properties of polypyrrole. The power density achieved with modified yeast in wastewater, 12 mW/m2, reached levels similar to those in laboratory solutions, 45 mW/m2. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

16 pages, 8522 KB  
Article
Plant Extracts as Modulators of the Wound Healing Process—Preliminary Study
by Anna Herman, Aleksandra Leska, Patrycja Wińska and Andrzej Przemysław Herman
Int. J. Mol. Sci. 2025, 26(15), 7490; https://doi.org/10.3390/ijms26157490 - 2 Aug 2025
Viewed by 752
Abstract
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological [...] Read more.
The treatment of chronic wounds is one of the most complex therapeutic problems of modern medicine. It leads to patients’ protracted recovery, generating high treatment costs. Herbal products may be useful in the treatment of chronic wounds via a wide range of pharmacological properties and multidirectional effects on the wound healing phases. The study aims to determine the ability of selected plant extracts to modulate the processes involved in wound healing. The antimicrobial (MIC, MBC, MFC) and antioxidant (ABTS, DPPH) activities, cytotoxicity (MTT test), scratch wound test, and collagen assay were tested. R. canina (MBC 0.39 mg/mL) and V. venifera (MBC 3.13 mg/mL) extracts had bactericidal activities against P. aeruginosa and S. aureus, respectively. The V. vinifera extract showed the highest antioxidant activity in both ABTS (EC50 0.078 mg/mL) and DPPH (EC50 0.005 mg/mL) methods. The percentage of wound closure observed for C. cardunculus, R. rosea, and R. canina extracts with HaCaT, and V. vinifera extract with Hs27 cells was set as 100%. V. vinifera extract (50 μg/mL) stimulated collagen synthesis 5.16 times more strongly than ascorbic acid. Our preliminary study showed that some plant extracts may be promising modulators of the wound healing process, although further in-depth studies are necessary to determine their effectiveness in the in vivo model. Full article
Show Figures

Figure 1

15 pages, 24344 KB  
Article
The Influence of Dimensional Parameters on the Characteristics of Magnetic Flux Concentrators Used in Tunneling Magnetoresistance Devices
by Ran Bi, Huiquan Zhang, Shi Pan, Xinting Liu, Ruiying Chen, Shilin Wu and Jun Hu
Sensors 2025, 25(15), 4739; https://doi.org/10.3390/s25154739 - 31 Jul 2025
Viewed by 361
Abstract
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing [...] Read more.
Measuring weak magnetic fields proposes significant challenges to the sensing capabilities of magnetic field sensors. The magnetic field detection capacity of tunnel magnetoresistance (TMR) sensors is often insufficient for such applications, necessitating targeted optimization strategies to improve their performance in weak-field measurements. Utilizing magnetic flux concentrators (MFCs) offers an effective approach to enhance TMR sensitivity. In this study, the finite element method was employed to analyze the effects of different MFC geometric structures on the uniformity of the magnetic field in the air gap and the magnetic circuit gain (MCG). It was determined that the MCG of the MFC is not directly related to the absolute values of its parameters but rather to their ratios. Simulation analyses evaluated the impact of these parameter ratios on both the MCG and its spatial distribution uniformity, leading to the formulation of MFC design optimization principles. Building on these simulation-derived principles, several MFCs were fabricated using the 1J85 material, and an experimental platform was established to validate the simulation findings. The fabricated MFCs achieved an MCG of 7.325 times. Based on the previously developed TMR devices, a detection sensitivity of 2.46 nT/Hz @1Hz was obtained. By optimizing parameter configurations, this work provides theoretical guidance for further enhancing the performance of TMR sensors in magnetic field measurements. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

14 pages, 3499 KB  
Article
Facile Preparation of iPP Fibrous Membranes from In Situ Microfibrillar Composites for Oil/Water Separation
by Chengtao Gao, Li Zhang, Xianrong Liu, Chen He, Shanshan Luo and Qin Tian
Polymers 2025, 17(15), 2114; https://doi.org/10.3390/polym17152114 - 31 Jul 2025
Viewed by 353
Abstract
Superhydrophobic and superoleophilic nanofibrous or microfibrous membranes are regarded as ideal oil/water separation materials owing to their controllable porosity, superior separation efficiency, and ease of operation. However, developing efficient, scalable, and environmentally friendly strategies for fabricating such membranes remains a significant challenge. In [...] Read more.
Superhydrophobic and superoleophilic nanofibrous or microfibrous membranes are regarded as ideal oil/water separation materials owing to their controllable porosity, superior separation efficiency, and ease of operation. However, developing efficient, scalable, and environmentally friendly strategies for fabricating such membranes remains a significant challenge. In this study, isotactic polypropylene (iPP) fibrous membranes with morphologies ranging from ellipsoidal stacking to microfiber stacking were successfully fabricated via a multistage stretching extrusion and leaching process using in situ microfibrillar composites (MFCs). The results establish a significant relationship between microfiber morphology and membrane oil adsorption performance. Compared with membranes formed from high-aspect-ratio microfibers, those comprising short microfibers feature larger pores and a more open structure, which enhances their oil adsorption capacity. Among the fabricated membranes, the iPP membrane with an ellipsoidal stacking morphology exhibits optimal performance, achieving a porosity of 65% and demonstrating both hydrophobicity and superoleophilicity, with a silicone oil adsorption capacity of up to 312.5%. Furthermore, this membrane shows excellent reusability and stability over ten adsorption–desorption cycles using chloroform. This study presents a novel approach leveraging in situ microfibrillar composites to prepare high-performance oil/water separation membranes in this study, underscoring their considerable promise for practical use. Full article
(This article belongs to the Topic Polymer Physics)
Show Figures

Figure 1

13 pages, 2697 KB  
Article
Integrating Molecular Alterations with Immunophenotype and Clinical Characteristics in Myelodysplastic Syndromes: A Single-Center Study
by Maciej Majcherek, Krzysztof Przeorski, Aleksandra Mroczkowska-Bękarciak, Natalia Nogaj, Donata Szymczak, Anna Kopszak, Krzysztof Kujawa, Paula Jabłonowska-Babij, Maciej Tomasiewicz, Agnieszka Szeremet, Tomasz Wróbel and Anna Czyż
Int. J. Mol. Sci. 2025, 26(15), 7382; https://doi.org/10.3390/ijms26157382 - 30 Jul 2025
Viewed by 421
Abstract
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center [...] Read more.
Continuous development of molecular and immunophenotypic techniques enables more precise diagnoses and more accurate assessment of prognosis in myelodysplastic syndromes (MDS). However, the relationship between genetic alterations and immunophenotype remains very poorly understood. The analysis included 30 patients diagnosed at a tertiary center who were eligible for azacitidine treatment. Next-generation sequencing (NGS) was performed at the start of the study to assess the mutation status of 40 genes associated with MDS pathogenesis. In addition, multiparametric flow cytometry (MFC) was performed to assess the ELN score (Ogata score) and, additionally, to detect an abnormal CD11b/HLA-DR and CD11b/CD13 expression pattern. In the studied patient population, higher ELN score results were found in patients with mutations in epigenetic modifiers and pathogenic mutations of the tumor suppressor genes. Signal pathway mutations were associated with lower platelet counts at diagnosis. The results of this study indicate a correlation between molecular abnormalities and deviations in cell immunophenotype. Investigating this correlation may, in the future, allow the development of new scales that allow a more sensitive and specific diagnosis of MDS and a more precise prediction of its course. Full article
(This article belongs to the Special Issue Immunophenotyping in Autoimmune Diseases and Cancer, 4th Edition)
Show Figures

Figure 1

19 pages, 1879 KB  
Article
A Preliminary Study of the Response of Microcyclosporella mali to Selected Essential Oils
by Elżbieta Paduch-Cichal, Wojciech Wakuliński, Anna Wilkos, Katarzyna Bączek, Olga Kosakowska, Zenon Węglarz and Ewa Mirzwa-Mróz
Molecules 2025, 30(15), 3122; https://doi.org/10.3390/molecules30153122 - 25 Jul 2025
Viewed by 338
Abstract
In Poland, the main causal agent of sooty blotch and flyspeck disease is the fungus Microcyclosporella mali J.Frank, Schroers et Crous, which is most commonly isolated from the spots found on apples. The aim of the paper was to study the effects of [...] Read more.
In Poland, the main causal agent of sooty blotch and flyspeck disease is the fungus Microcyclosporella mali J.Frank, Schroers et Crous, which is most commonly isolated from the spots found on apples. The aim of the paper was to study the effects of essential oils extracted from Greek oregano, thyme and costmary on M. mali. Analysis of the essential oils was conducted using gas chromatography–mass spectrometry (GC–MS) with a flame ionization detector (FID). The Greek oregano essential oil was classified to the carvacrol chemotype, while the thyme and costmary were classified to the thymol and the β-thujone chemotypes, respectively. The influence of these essential oils on the viability of the M. mali conidia was analysed cytometrically. The Greek oregano oil was characterised by the significantly highest activity against the M. mali spores. The regression analysis performed showed the occurrence of a significant linear relationship between the viability of the conidia and the concentration of the essential oils, which was then the basis for the determination of MICs and MFCs. The values of these parameters in the case of the Greek oregano oil were 0.9 and 0.4%, respectively, and for the thyme oil they were 1.2 and 2.4%. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop