Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = MMP-cleavable peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3065 KB  
Article
Matrix Metalloproteinase-2-Responsive Peptide-Modified Cleavable PEGylated Liposomes for Paclitaxel Delivery
by Xingyu Zhao and Yinghuan Li
Pharmaceuticals 2025, 18(7), 1042; https://doi.org/10.3390/ph18071042 - 15 Jul 2025
Cited by 1 | Viewed by 2451
Abstract
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity [...] Read more.
Background/Objectives: PEGylated liposomes are widely recognized for their biocompatibility and capacity to extend systemic circulation via “stealth” properties. However, the PEG corona often limits tumor penetration and cellular internalization. Targeting matrix metalloproteinase-2 (MMP-2), frequently upregulated in breast cancer stroma, presents an opportunity to enhance tissue-specific drug delivery. In this study, we engineered MMP-2-responsive GPLGVRG peptide-modified cleavable PEGylated liposomes for targeted paclitaxel (PTX) delivery. Methods: Molecular docking simulations employed the MMP-2 crystal structure (PDB ID: 7XJO) to assess GPLGVRG peptide binding affinity. A cleavable, enzyme-sensitive peptide-PEG conjugate (Chol-PEG2K-GPLGVRG-PEG5K) was synthesized via small-molecule liquid-phase synthesis and characterized by 1H NMR and MALDI-TOF MS. Liposomes incorporating this conjugate (S-Peps-PEG5K) were formulated to evaluate whether MMP-2-mediated peptide degradation triggers detachment of long-chain PEG moieties, thereby enhancing internalization by 4T1 breast cancer cells. Additionally, the effects of tumor microenvironmental pH (~6.5) and MMP-2 concentration on drug release dynamics were investigated. Results: Molecular docking revealed robust GPLGVRG-MMP-2 interactions, yielding a binding energy of −7.1 kcal/mol. The peptide formed hydrogen bonds with MMP-2 residues Tyr A:23 and Arg A:53 (bond lengths: 2.4–2.5 Å) and engaged in hydrophobic contacts, confirming MMP-2 as the primary recognition site. Formulations containing 5 mol% Chol-PEG2K-GPLGVRG-PEG5K combined with 0.15 µg/mL MMP-2 (S-Peps-PEG5K +MMP) exhibited superior internalization efficiency and significantly reduced clonogenic survival compared to controls. Notably, acidic pH (~6.5) induced MMP-2-mediated cleavage of the GPLGVRG peptide, accelerating S-Peps-PEG5K dissociation and facilitating drug release. Conclusions: MMP-2-responsive, cleavable PEGylated liposomes markedly improve PTX accumulation and controlled release at tumor sites by dynamically modulating their stealth properties, offering a promising strategy to enhance chemotherapy efficacy in breast cancer. Full article
Show Figures

Graphical abstract

16 pages, 3181 KB  
Article
Tumor-Targeted Cell-Penetrating Peptides Reveal That Monomethyl Auristatin E Temporally Modulates the Tumor Immune Microenvironment
by Mahsa Mortaja, Marcus M. Cheng, Alina Ali, Jacqueline Lesperance, Dina V. Hingorani, Mike M. Allevato, Kanika Dhawan, Maria F. Camargo, Rana R. McKay, Stephen R. Adams, J. Silvio Gutkind and Sunil J. Advani
Molecules 2024, 29(23), 5618; https://doi.org/10.3390/molecules29235618 - 27 Nov 2024
Cited by 3 | Viewed by 2865
Abstract
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) [...] Read more.
Chemotherapies remain standard therapy for cancers but have limited efficacy and cause significant side effects, highlighting the need for targeted approaches. In the progression of cancer, tumors increase matrix metalloproteinase (MMP) activity. Leveraging and therapeutically redirecting tumor MMPs through activatable cell-penetrating peptide (ACPP) technology offers new approaches for tumor-selective drug delivery and for studying how drug payloads engage the tumor immune microenvironment. ACPPs are biosensing peptides consisting of a drug-conjugated polycationic cell-penetrating peptide masked by an autoinhibitory polyanionic peptide through an interlinking peptide linker. Since tumors overexpress MMPs, ACPP tumor-targeting is achieved using an MMP cleavable linker. Monomethyl auristatin E (MMAE) is a potent anti-tubulin and common drug payload in antibody drug conjugates; however there are limited pre-clinical studies on how this clinically effective drug modulates the interplay of cancer cells and the immune system. Here, we report the versatility of ACPP conjugates in syngeneic murine cancer models and interrogate how MMAE temporally alters the tumor immune microenvironment. We show that cRGD-ACPP-MMAE preferentially delivered MMAE to tumors in murine models. Targeted cRGD-ACPP-MMAE demonstrated anti-tumor kill activity that activated the innate and adaptive arms of the immune system. Understanding how targeted MMAE engages tumors can optimize MMAE tumor kill activity and inform rational combinations with other cancer therapeutics. Full article
Show Figures

Graphical abstract

25 pages, 3699 KB  
Article
A Conditionally Activated Cytosol-Penetrating Antibody for TME-Dependent Intracellular Cargo Delivery
by Carolin Sophie Dombrowsky, Dominic Happel, Jan Habermann, Sarah Hofmann, Sasi Otmi, Benny Cohen and Harald Kolmar
Antibodies 2024, 13(2), 37; https://doi.org/10.3390/antib13020037 - 2 May 2024
Cited by 3 | Viewed by 6012
Abstract
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody [...] Read more.
Currently, therapeutic and diagnostic applications of antibodies are primarily limited to cell surface-exposed and extracellular proteins. However, research has been conducted on cell-penetrating peptides (CPP), as well as cytosol-penetrating antibodies, to overcome these limitations. In this context, a heparin sulfate proteoglycan (HSPG)-binding antibody was serendipitously discovered, which eventually localizes to the cytosol of target cells. Functional characterization revealed that the tested antibody has beneficial cytosol-penetrating capabilities and can deliver cargo proteins (up to 70 kDa) to the cytosol. To achieve tumor-specific cell targeting and cargo delivery through conditional activation of the cell-penetrating antibody in the tumor microenvironment, a single-chain Fc fragment (scFv) and a VL domain were isolated as masking units. Several in vitro assays demonstrated that fusing the masking protein with a cleavable linker to the cell penetration antibody results in the inactivation of antibody cell binding and internalization. Removal of the mask via MMP-9 protease cleavage, a protease that is frequently overexpressed in the tumor microenvironment (TME), led to complete regeneration of binding and cytosol-penetrating capabilities. Masked and conditionally activated cytosol-penetrating antibodies have the potential to serve as a modular platform for delivering protein cargoes addressing intracellular targets in tumor cells. Full article
Show Figures

Figure 1

12 pages, 2656 KB  
Article
Activatable Peptides for Rapid and Simple Visualization of Protease Activity Secreted in Living Cells
by Gae-Baik Kim, Jeong Min Lee, Duc Long Nguyen, Joonseok Lee and Young-Pil Kim
Int. J. Mol. Sci. 2022, 23(3), 1605; https://doi.org/10.3390/ijms23031605 - 30 Jan 2022
Cited by 2 | Viewed by 2832
Abstract
Activity-based monitoring of cell-secreted proteases has gained significant interest due to the implication of these substances in diverse cellular functions. Here, we demonstrated a cell-based method of monitoring protease activity using fluorescent cell-permeable peptides. The activatable peptide consists of anionic (EEEE), cleavable, and [...] Read more.
Activity-based monitoring of cell-secreted proteases has gained significant interest due to the implication of these substances in diverse cellular functions. Here, we demonstrated a cell-based method of monitoring protease activity using fluorescent cell-permeable peptides. The activatable peptide consists of anionic (EEEE), cleavable, and cationic sequences (RRRR) that enable intracellular delivery by matrix metalloproteinase-2 (MMP2), which is secreted by living cancer cells. Compared to HT-29 cells (MMP2-negative), HT-1080 cells (MMP2-positive) showed a strong fluorescence response to the short fluorescent peptide via cell-secreted protease activation. Our approach is expected to find applications for the rapid visualization of protease activity in living cells. Full article
(This article belongs to the Special Issue Protein and Nucleotide Engineering for Diagnoses and Biosensing)
Show Figures

Figure 1

20 pages, 3077 KB  
Review
Bone Regeneration Using MMP-Cleavable Peptides-Based Hydrogels
by Weikai Chen, Ziyang Zhou, Dagui Chen, Yinghua Li, Qin Zhang and Jiacan Su
Gels 2021, 7(4), 199; https://doi.org/10.3390/gels7040199 - 5 Nov 2021
Cited by 39 | Viewed by 7789
Abstract
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely [...] Read more.
Accumulating evidence has suggested the significant potential of chemically modified hydrogels in bone regeneration. Despite the progress of bioactive hydrogels with different materials, structures and loading cargoes, the desires from clinical applications have not been fully validated. Multiple biological behaviors are orchestrated precisely during the bone regeneration process, including bone marrow mesenchymal stem cells (BMSCs) recruitment, osteogenic differentiation, matrix calcification and well-organized remodeling. Since matrix metalloproteinases play critical roles in such bone metabolism processes as BMSC commitment, osteoblast survival, osteoclast activation matrix calcification and microstructure remodeling, matrix metalloproteinase (MMP) cleavable peptides-based hydrogels could respond to various MMP levels and, thus, accelerate bone regeneration. In this review, we focused on the MMP-cleavable peptides, polymers, functional modification and crosslinked reactions. Applications, perspectives and limitations of MMP-cleavable peptides-based hydrogels for bone regeneration were then discussed. Full article
(This article belongs to the Special Issue Supramolecular/Supramolecular Hybrid Hydrogel)
Show Figures

Graphical abstract

11 pages, 1504 KB  
Article
Cell-Penetrating Doxorubicin Released from Elastin-Like Polypeptide Kills Doxorubicin-Resistant Cancer Cells in In Vitro Study
by Jung Su Ryu, Felix Kratz and Drazen Raucher
Int. J. Mol. Sci. 2021, 22(3), 1126; https://doi.org/10.3390/ijms22031126 - 23 Jan 2021
Cited by 12 | Viewed by 3367
Abstract
Elastin-like polypeptides (ELPs) undergo a characteristic phase transition in response to ambient temperature. Therefore, it has been be used as a thermosensitive vector for the delivery of chemotherapy agents since it can be used to target hyperthermic tumors. This novel strategy introduces unprecedented [...] Read more.
Elastin-like polypeptides (ELPs) undergo a characteristic phase transition in response to ambient temperature. Therefore, it has been be used as a thermosensitive vector for the delivery of chemotherapy agents since it can be used to target hyperthermic tumors. This novel strategy introduces unprecedented options for treating cancer with fewer concerns about side effects. In this study, the ELP system was further modified with an enzyme-cleavable linker in order to release drugs within tumors. This system consists of an ELP, a matrix metalloproteinase (MMP) substrate, a cell-penetrating peptide (CPP), and a 6-maleimidocaproyl amide derivative of doxorubicin (Dox). This strategy shows up to a 4-fold increase in cell penetration and results in more death in breast cancer cells compared to ELP-Dox. Even in doxorubicin-resistant cells (NCI/ADR and MES-SA/Dx5), ELP-released cell-penetrating doxorubicin demonstrated better membrane penetration, leading to at least twice the killing of resistant cells compared to ELP-Dox and free Dox. MMP-digested CPP-Dox showed better membrane penetration and induced more cancer cell death in vitro. This CPP-complexed Dox released from the ELP killed even Dox-resistant cells more efficiently than both free doxorubicin and non-cleaved ELP-CPP-Dox. Full article
Show Figures

Figure 1

16 pages, 3863 KB  
Article
A Co-Delivery System of Curcumin and p53 for Enhancing the Sensitivity of Drug-Resistant Ovarian Cancer Cells to Cisplatin
by Xinli Guo, Zhou Fang, Min Zhang, Deyu Yang, Shuyue Wang and Kehai Liu
Molecules 2020, 25(11), 2621; https://doi.org/10.3390/molecules25112621 - 4 Jun 2020
Cited by 16 | Viewed by 3779
Abstract
In order to enhance the sensitivity of drug-resistant ovarian cancer cells to cisplatin (DDP), a co-delivery system was designed for simultaneous delivery of curcumin (CUR) and p53 DNA. Firstly, the bifunctional peptide K14 composed of tumor targeting peptide (tLyP-1) and nuclear localization signal [...] Read more.
In order to enhance the sensitivity of drug-resistant ovarian cancer cells to cisplatin (DDP), a co-delivery system was designed for simultaneous delivery of curcumin (CUR) and p53 DNA. Firstly, the bifunctional peptide K14 composed of tumor targeting peptide (tLyP-1) and nuclear localization signal (NLS) was synthesized. A nonviral carrier (PEI-K14) was synthesized by cross-linking low molecular weight polyethyleneimine (PEI) with K14. Then, CUR was coupled to PEI-K14 by matrix metalloproteinase 9 (MMP9)-cleavable peptide to prepare CUR-PEI-K14. A co-delivery system, named CUR-PEI-K14/p53, was obtained by CUR-PEI-K14 and p53 self-assembly. Furthermore, the physicochemical properties and gene transfection efficiency were evaluated. Finally, ovarian cancer cisplatin-resistant (SKOV3-DDP) cells were selected to evaluate the effect of CUR-PEI-K14/p53 on enhancing the sensitivity of drug-resistant cells to DDP. The CUR-PEI-K14/DNA complexes appeared uniformly dispersed and spherical. The particle size was around 20–150 nm and the zeta potential was around 18–37 mV. It had good stability, high transfection efficiency, and low cytotoxicity. CUR-PEI-K14/p53 could significantly increase the sensitivity of SKOV3-DDP cells to DDP, and this effect was better as combined with DDP. The sensitizing effect might be related to the upregulation of p53 messenger RNA (mRNA), the downregulation of P-glycoprotein (P-gp) mRNA, and the upregulation of BCL2-Associated X (bax) mRNA. CUR-PEI-K14/p53 can be used as an effective strategy to enhance the sensitivity of drug-resistant ovarian cancer cells to DDP. Full article
Show Figures

Figure 1

18 pages, 5622 KB  
Article
Towards Developing Bioresponsive, Self-Assembled Peptide Materials: Dynamic Morphology and Fractal Nature of Nanostructured Matrices
by Kyle M. Koss and Larry D. Unsworth
Materials 2018, 11(9), 1539; https://doi.org/10.3390/ma11091539 - 27 Aug 2018
Cited by 10 | Viewed by 3398
Abstract
(Arginine-alanine-aspartic acid-alanine)4 ((RADA)4) nanoscaffolds are excellent candidates for use as peptide delivery vehicles: they are relatively easy to synthesize with custom bio-functionality, and assemble in situ to allow a focal point of release. This enables (RADA)4 to be utilized [...] Read more.
(Arginine-alanine-aspartic acid-alanine)4 ((RADA)4) nanoscaffolds are excellent candidates for use as peptide delivery vehicles: they are relatively easy to synthesize with custom bio-functionality, and assemble in situ to allow a focal point of release. This enables (RADA)4 to be utilized in multiple release strategies by embedding a variety of bioactive molecules in an all-in-one “construct”. One novel strategy focuses on the local, on-demand release of peptides triggered via proteolysis of tethered peptide sequences. However, the spatial-temporal morphology of self-assembling nanoscaffolds may greatly influence the ability of enzymes to both diffuse into as well as actively cleave substrates. Fine structure and its impact on the overall effect on peptide release is poorly understood. In addition, fractal networks observed in nanoscaffolds are linked to the fractal nature of diffusion in these systems. Therefore, matrix morphology and fractal dimension of virgin (RADA)4 and mixtures of (RADA)4 and matrix metalloproteinase 2 (MMP-2) cleavable substrate modified (RADA)4 were characterized over time. Sites of high (glycine-proline-glutamine-glycine+isoleucine-alanine-serine-glutamine (GPQG+IASQ), CP1) and low (glycine-proline-glutamine-glycine+proline-alanine-glycine-glutamine (GPQG+PAGQ), CP2) cleavage activity were chosen. Fine structure was visualized using transmission electron microscopy. After 2 h of incubation, nanofiber networks showed an established fractal nature; however, nanofibers continued to bundle in all cases as incubation times increased. It was observed that despite extensive nanofiber bundling after 24 h of incubation time, the CP1 and CP2 nanoscaffolds were susceptible to MMP-2 cleavage. The properties of these engineered nanoscaffolds characterized herein illustrate that they are an excellent candidate as an enzymatically initiated peptide delivery platform. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

16 pages, 2706 KB  
Article
Rv0613c/MSMEG_1285 Interacts with HBHA and Mediates Its Proper Cell-Surface Exposure in Mycobacteria
by Romain Veyron-Churlet, Vincent Dupres, Jean-Michel Saliou, Frank Lafont, Dominique Raze and Camille Locht
Int. J. Mol. Sci. 2018, 19(6), 1673; https://doi.org/10.3390/ijms19061673 - 5 Jun 2018
Cited by 9 | Viewed by 4285
Abstract
Heparin-binding haemagglutinin (HBHA) is a surface-exposed virulence factor of Mycobacterium tuberculosis and is involved in the binding of mycobacteria to non-phagocytic cells, allowing for extra-pulmonary dissemination of the bacilli. Despite its surface exposure, HBHA is not produced as a pre-protein containing a typical [...] Read more.
Heparin-binding haemagglutinin (HBHA) is a surface-exposed virulence factor of Mycobacterium tuberculosis and is involved in the binding of mycobacteria to non-phagocytic cells, allowing for extra-pulmonary dissemination of the bacilli. Despite its surface exposure, HBHA is not produced as a pre-protein containing a typical cleavable N-terminal signal peptide and is thus likely secreted by a Sec-independent, as of yet unknown mechanism. Here, we used the bacterial adenylate cyclase two-hybrid system to identify the proteins encoded by rv0613c and mmpL14 as being able to interact with HBHA. Our study was focused on Rv0613c, as it showed more consistent interactions with HBHA than MmpL14. Deletion of its orthologous gene MSMEG_1285 in recombinant Mycobacterium smegmatis producing HBHA from M. tuberculosis resulted in the loss of proper surface exposure of HBHA, as evidenced by atomic force microscopy. Furthermore, the lack of MSMEG_1285 also abolished the clumping phenotype and rough colony morphology of the recombinant M. smegmatis and reduced its adherence to A549 epithelial cells. These phenotypes have previously been associated with surface-exposed HBHA. Thus, MSMEG_1285 is directly involved in the proper cell-surface exposure of HBHA. These observations identify MSMEG_1285/Rv0613c as the first accessory protein involved in the cell surface exposure of HBHA. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop