Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = MOPV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2216 KB  
Article
Monitoring the Risk of Type-2 Circulating Vaccine-Derived Poliovirus Emergence During Roll-Out of Type-2 Novel Oral Polio Vaccine
by Corey M. Peak, Hil Lyons, Arend Voorman, Elizabeth J. Gray, Laura V. Cooper, Isobel M. Blake, Kaija M. Hawes and Ananda S. Bandyopadhyay
Vaccines 2024, 12(12), 1308; https://doi.org/10.3390/vaccines12121308 - 22 Nov 2024
Cited by 2 | Viewed by 3152
Abstract
Background/Objectives: Although wild poliovirus type 2 has been eradicated, the prolonged transmission of the live- attenuated virus contained in the type-2 oral polio vaccine (OPV2) in under-immunized populations has led to the emergence of circulating vaccine-derived poliovirus type 2 (cVDPV2). The novel OPV2 [...] Read more.
Background/Objectives: Although wild poliovirus type 2 has been eradicated, the prolonged transmission of the live- attenuated virus contained in the type-2 oral polio vaccine (OPV2) in under-immunized populations has led to the emergence of circulating vaccine-derived poliovirus type 2 (cVDPV2). The novel OPV2 (nOPV2) was designed to be more genetically stable and reduce the chance of cVDPV2 emergence while retaining comparable immunogenicity to the Sabin monovalent OPV2 (mOPV2). This study aimed to estimate the relative reduction in the emergence risk due to the use of nOPV2 instead of mOPV2. Methods: Data on OPV2 vaccination campaigns from May 2016 to 1 August 2024 were analyzed to estimate type-2 OPV-induced immunity in children under 5 years of age. Poliovirus surveillance data were used to estimate seeding dates and classify cVDPV2 emergences as mOPV2- or nOPV2-derived. The expected number of emergences if mOPV2 was used instead of nOPV2 was estimated, accounting for the timing and volume of nOPV2 doses, the known risk factors for emergence from mOPV2, and censoring due to the incomplete observation period for more recent nOPV2 doses. Results: As of 1 August 2024, over 98% of the approximately 1.19 billion nOPV2 doses administered globally were in Africa. We estimate that approximately 76 (95% confidence interval 69–85) index isolates of cVDPV2 emergences would be expected to be detected by 1 August 2024 if mOPV2 had been used instead of nOPV2 in Africa. The 18 observed nOPV2-derived emergences represent a 76% (74–79%) lower risk of emergence by nOPV2 than mOPV2 in Africa. The crude global analysis produced similar results. Key limitations include the incomplete understanding of the drivers of heterogeneity in emergence risk across geographies and variance in the per-dose risk of emergence may be incompletely captured using known risk factors. Conclusions: These results are consistent with the accumulating clinical and field evidence showing the enhanced genetic stability of nOPV2 relative to mOPV2, and this approach has been implemented in near-real time to contextualize new findings during the roll-out of this new vaccine. While nOPV2 has resulted in new emergences of cVDPV2, the number of cVDPV2 emergences is estimated to be approximately four-fold lower than if mOPV2 had been used instead. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
Show Figures

Figure 1

12 pages, 585 KB  
Article
The Immunogenicity of Monovalent Oral Poliovirus Vaccine Type 1 (mOPV1) and Inactivated Poliovirus Vaccine (IPV) in the EPI Schedule of India
by Lalitendu Mohanty, T. Jacob John, Shailesh D. Pawar, Padmasani Venkat Ramanan, Sharad Agarkhedkar and Pradeep Haldar
Vaccines 2024, 12(4), 424; https://doi.org/10.3390/vaccines12040424 - 17 Apr 2024
Cited by 1 | Viewed by 2929
Abstract
Background: In 2016, the Global Polio Eradication Initiative (GPEI) recommended the cessation of using type 2 oral poliovirus vaccine (OPV) and OPV, with countries having to switch from the trivalent to bivalent OPV (bOPV) with the addition of inactivated poliovirus vaccine (IPV) in [...] Read more.
Background: In 2016, the Global Polio Eradication Initiative (GPEI) recommended the cessation of using type 2 oral poliovirus vaccine (OPV) and OPV, with countries having to switch from the trivalent to bivalent OPV (bOPV) with the addition of inactivated poliovirus vaccine (IPV) in their routine immunization schedule. The current GPEI strategy 2022–2026 includes a bOPV cessation plan and a switch to IPV alone or a combination of vaccine schedules in the future. The focus of our study was to evaluate the immunogenicity of monovalent OPV type 1 (mOPV1) with IPV and IPV-only schedules. Methods: This was a three-arm, multi-center randomized–controlled trial conducted in 2016–2017 in India. Participants, at birth, were randomly assigned to the bOPV-IPV (Arm A) or mOPV1-IPV (Arm B) or IPV (Arm C) schedules. Serum specimens collected at birth and at 14, 18, and 22 weeks old were analyzed with a standard microneutralization assay for all the three poliovirus serotypes. Results: The results of 598 participants were analyzed. The type 1 cumulative seroconversion rates four weeks after the completion of the schedule at 18 weeks were 99.5% (97.0–99.9), 100.0% (97.9–100.0), and 96.0% (92.0–98.1) in Arms A (4bOPV + IPV), B (4mOPV1 + IPV), and C (3IPV), respectively. Type 2 and type 3 seroconversions at 18 weeks were 80.0% (73.7–85.1), 76.9% (70.3–82.4); 93.2% (88.5–96.1), 100.0% (98.0–100.0); and 81.9% (75.6–86.8), 99.4% (96.9–99.9), respectively, in the three arms. Conclusions: This study shows the high efficacy of different polio vaccines for serotype 1 in all three schedules. The type 1 seroconversion rate of mOPV1 is non-inferior to bOPV. All the vaccines provide high type-specific immunogenicity. The program can adopt the use of different vaccines or schedules depending on the epidemiology from time to time. Full article
Show Figures

Figure 1

14 pages, 2291 KB  
Article
Establishment of Recombinant Trisegmented Mopeia Virus Expressing Two Reporter Genes for Screening of Mammarenavirus Inhibitors
by Lisa Oestereich, Stephanie Wurr, Beate Becker-Ziaja, Sabrina Bockholt, Meike Pahlmann, Daniel Cadar, Beate M. Kümmerer, Stephan Günther and Romy Kerber
Viruses 2022, 14(9), 1869; https://doi.org/10.3390/v14091869 - 25 Aug 2022
Cited by 6 | Viewed by 2504
Abstract
Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment [...] Read more.
Highly pathogenic Arenaviruses, like the Lassa Virus (LASV), pose a serious public health threat in affected countries. Research and development of vaccines and therapeutics are urgently needed but hampered by the necessity to handle these pathogens under biosafety level 4 conditions. These containment restrictions make large-scale screens of antiviral compounds difficult. Therefore, the Mopeia virus (MOPV), closely related to LASV, is often used as an apathogenic surrogate virus. We established for the first time trisegmented MOPVs (r3MOPV) with duplicated S segments, in which one of the viral genes was replaced by the reporter genes ZsGreen (ZsG) or Renilla Luciferase (Rluc), respectively. In vitro characterization of the two trisegmented viruses (r3MOPV ZsG/Rluc and r3MOPV Rluc/ZsG), showed comparable growth behavior to the wild type virus and the expression of the reporter genes correlated well with viral titer. We used the reporter viruses in a proof-of-principle in vitro study to evaluate the antiviral activity of two well characterized drugs. IC50 values obtained by Rluc measurement were similar to those obtained by virus titers. ZsG expression was also suitable to evaluate antiviral effects. The trisegmented MOPVs described here provide a versatile and valuable basis for rapid high throughput screening of broadly reactive antiviral compounds against arenaviruses under BSL-2 conditions. Full article
(This article belongs to the Special Issue Bunyavirus, Volume II)
Show Figures

Figure 1

20 pages, 5720 KB  
Article
Infection of Human Endothelial Cells with Lassa Virus Induces Early but Transient Activation and Low Type I IFN Response Compared to the Closely-Related Nonpathogenic Mopeia Virus
by Othmann Merabet, Natalia Pietrosemoli, Emeline Perthame, Jean Armengaud, Jean-Charles Gaillard, Virginie Borges-Cardoso, Maïlys Daniau, Catherine Legras-Lachuer, Xavier Carnec and Sylvain Baize
Viruses 2022, 14(3), 652; https://doi.org/10.3390/v14030652 - 21 Mar 2022
Cited by 6 | Viewed by 3207
Abstract
Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. [...] Read more.
Lassa virus (LASV), an Old World arenavirus, is responsible for hemorrhagic fevers in western Africa. The privileged tropism of LASV for endothelial cells combined with a dysregulated inflammatory response are the main cause of the increase in vascular permeability observed during the disease. Mopeia virus (MOPV) is another arenavirus closely related to LASV but nonpathogenic for non-human primates (NHPs) and has never been described in humans. MOPV is more immunogenic than LASV in NHPs and in vitro in human immune cell models, with more intense type I IFN and adaptive cellular responses. Here, we compared the transcriptomic and proteomic responses of human umbilical vein endothelial cells (HUVECs) to infection with the two viruses to further decipher the mechanisms involved in their differences in immunogenicity and pathogenicity. Both viruses replicated durably and efficiently in HUVECs, but the responses they induced were strikingly different. Modest activation was observed at an early stage of LASV infection and then rapidly shut down. By contrast, MOPV induced a late but more intense response, characterized by the expression of genes and proteins mainly associated with the type I IFN response and antigen processing/presentation. Such a response is consistent with the higher immunogenicity of MOPV relative to LASV, whereas the lack of an innate response induced in HUVECs by LASV is consistent with its uncontrolled systemic dissemination through the vascular endothelium. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 2212 KB  
Article
Lassa Virus Vaccine Candidate ML29 Generates Truncated Viral RNAs Which Contribute to Interfering Activity and Attenuation
by Dylan M. Johnson, Beatrice Cubitt, Tia L. Pfeffer, Juan Carlos de la Torre and Igor S. Lukashevich
Viruses 2021, 13(2), 214; https://doi.org/10.3390/v13020214 - 30 Jan 2021
Cited by 16 | Viewed by 4476
Abstract
Defective interfering particles (DIPs) are naturally occurring products during virus replication in infected cells. DIPs contain defective viral genomes (DVGs) and interfere with replication and propagation of their corresponding standard viral genomes by competing for viral and cellular resources, as well as promoting [...] Read more.
Defective interfering particles (DIPs) are naturally occurring products during virus replication in infected cells. DIPs contain defective viral genomes (DVGs) and interfere with replication and propagation of their corresponding standard viral genomes by competing for viral and cellular resources, as well as promoting innate immune antiviral responses. Consequently, for many different viruses, including mammarenaviruses, DIPs play key roles in the outcome of infection. Due to their ability to broadly interfere with viral replication, DIPs are attractive tools for the development of a new generation of biologics to target genetically diverse and rapidly evolving viruses. Here, we provide evidence that in cells infected with the Lassa fever (LF) vaccine candidate ML29, a reassortant that carries the nucleoprotein (NP) and glycoprotein (GP) dominant antigens of the pathogenic Lassa virus (LASV) together with the L polymerase and Z matrix protein of the non-pathogenic genetically related Mopeia virus (MOPV), L-derived truncated RNA species are readily detected following infection at low multiplicity of infection (MOI) or in persistently-infected cells originally infected at high MOI. In the present study, we show that expression of green fluorescent protein (GFP) driven by a tri-segmented form of the mammarenavirus lymphocytic choriomeningitis virus (r3LCMV-GFP/GFP) was strongly inhibited in ML29-persistently infected cells, and that the magnitude of GFP suppression was dependent on the passage history of the ML29-persistently infected cells. In addition, we found that DIP-enriched ML29 was highly attenuated in immunocompetent CBA/J mice and in Hartley guinea pigs. Likewise, STAT-1-/- mice, a validated small animal model for human LF associated hearing loss sequelae, infected with DIP-enriched ML29 did not exhibit any hearing abnormalities throughout the observation period (62 days). Full article
(This article belongs to the Special Issue Arenaviruses 2020)
Show Figures

Figure 1

20 pages, 1754 KB  
Article
E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles
by Nicolas Baillet, Sophie Krieger, Xavier Carnec, Mathieu Mateo, Alexandra Journeaux, Othmann Merabet, Valérie Caro, Frédéric Tangy, Pierre-Olivier Vidalain and Sylvain Baize
Viruses 2020, 12(1), 49; https://doi.org/10.3390/v12010049 - 31 Dec 2019
Cited by 14 | Viewed by 3591
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential [...] Read more.
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

18 pages, 4458 KB  
Article
Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses
by Nicolas Baillet, Sophie Krieger, Alexandra Journeaux, Valérie Caro, Frédéric Tangy, Pierre-Olivier Vidalain and Sylvain Baize
Viruses 2019, 11(3), 293; https://doi.org/10.3390/v11030293 - 23 Mar 2019
Cited by 16 | Viewed by 5029
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic [...] Read more.
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity. Full article
(This article belongs to the Special Issue Medical Advances in Viral Hemorrhagic Fever Research)
Show Figures

Figure 1

9 pages, 2566 KB  
Article
Non-Pathogenic Mopeia Virus Induces More Robust Activation of Plasmacytoid Dendritic Cells than Lassa Virus
by Justine Schaeffer, Stéphanie Reynard, Xavier Carnec, Natalia Pietrosemoli, Marie-Agnès Dillies and Sylvain Baize
Viruses 2019, 11(3), 287; https://doi.org/10.3390/v11030287 - 21 Mar 2019
Cited by 9 | Viewed by 4181
Abstract
Lassa virus (LASV) causes a viral haemorrhagic fever in humans and is a major public health concern in West Africa. An efficient immune response to LASV appears to rely on type I interferon (IFN-I) production and T-cell activation. We evaluated the response of [...] Read more.
Lassa virus (LASV) causes a viral haemorrhagic fever in humans and is a major public health concern in West Africa. An efficient immune response to LASV appears to rely on type I interferon (IFN-I) production and T-cell activation. We evaluated the response of plasmacytoid dendritic cells (pDC) to LASV, as they are an important and early source of IFN-I. We compared the response of primary human pDCs to LASV and Mopeia virus (MOPV), which is very closely related to LASV, but non-pathogenic. We showed that pDCs are not productively infected by either MOPV or LASV, but produce IFN-I. However, the activation of pDCs was more robust in response to MOPV than LASV. In vivo, pDC activation may support the control of viral replication through IFN-I production, but also improve the induction of a global immune response. Therefore, pDC activation could play a role in the control of LASV infection. Full article
(This article belongs to the Special Issue Medical Advances in Viral Hemorrhagic Fever Research)
Show Figures

Figure 1

17 pages, 8731 KB  
Article
Attenuated Replication of Lassa Virus Vaccine Candidate ML29 in STAT-1-/- Mice
by Dylan M. Johnson, Jenny D. Jokinen and Igor S. Lukashevich
Pathogens 2019, 8(1), 9; https://doi.org/10.3390/pathogens8010009 - 15 Jan 2019
Cited by 13 | Viewed by 5777
Abstract
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor [...] Read more.
Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host’s immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements. Full article
Show Figures

Figure 1

14 pages, 10267 KB  
Review
Chrysoviruses in Magnaporthe oryzae
by Hiromitsu Moriyama, Syun-ichi Urayama, Tomoya Higashiura, Tuong Minh Le and Ken Komatsu
Viruses 2018, 10(12), 697; https://doi.org/10.3390/v10120697 - 8 Dec 2018
Cited by 21 | Viewed by 6299
Abstract
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, [...] Read more.
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, Victorivirus, in the family, Totiviridae; Magnaporthe oryzae. partitivirus 1 (MoPV1) in the family, Partitiviridae; Magnaporthe oryzae. chrysovirus 1 strains A and B (MoCV1-A and MoCV1-B) belonging to cluster II of the family, Chrysoviridae; a mycovirus related to plant viruses of the family, Tombusviridae (Magnaporthe oryzae. virus A); and a (+)ssRNA mycovirus closely related to the ourmia-like viruses (Magnaporthe oryzae. ourmia-like virus 1). Among these, MoCV1-A and MoCV1-B were the first reported mycoviruses that cause hypovirulence traits in their host fungus, such as impaired growth, altered colony morphology, and reduced pigmentation. Recently we reported that, although MoCV1-A infection generally confers hypovirulence to fungi, it is also a driving force behind the development of physiological diversity, including pathogenic races. Another example of modulated pathogenicity caused by mycovirus infection is that of Alternaria alternata chrysovirus 1 (AaCV1), which is closely related to MoCV1-A. AaCV1 exhibits two contrasting effects: Impaired growth of the host fungus while rendering the host hypervirulent to the plant, through increased production of the host-specific AK-toxin. It is inferred that these mycoviruses might be epigenetic factors that cause changes in the pathogenicity of phytopathogenic fungi. Full article
(This article belongs to the Special Issue Mycoviruses)
Show Figures

Figure 1

15 pages, 5781 KB  
Article
Mammarenaviral Infection Is Dependent on Directional Exposure to and Release from Polarized Intestinal Epithelia
by Nikole L. Warner, Jenny D. Jokinen, Juliane I. Beier, Kevin J. Sokoloski and Igor S. Lukashevich
Viruses 2018, 10(2), 75; https://doi.org/10.3390/v10020075 - 10 Feb 2018
Cited by 6 | Viewed by 4658
Abstract
Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells [...] Read more.
Mammarenavirusesare single-stranded RNA viruses with a bisegmented ambisense genome. Ingestion has been shown as a natural route of transmission for both Lassa virus (LASV) and Lymphocytic choriomeningitis virus (LCMV). Due to the mechanism of transmission, epithelial tissues are among the first host cells to come in contact with the viruses, and as such they potentially play a role in spread of virus to naïve hosts. The role of the intestinal epithelia during arenavirus infection remains to be uncharacterized. We have utilized a well-established cell culture model, Caco-2, to investigate the role of intestinal epithelia during intragastric infection. We found that LCMV-Armstrong, LCMV-WE, and Mopeia (MOPV) release infectious progeny via similar patterns. However, the reassortant virus, ML-29, containing the L segment of MOPV and S segment of LASV, exhibits a unique pattern of viral release relative to LCMV and MOPV. Furthermore, we have determined attachment efficacy to Caco-2 cells is potentially responsible for observed replication kinetics of these viruses in a polarized Caco-2 cell model. Collectively, our data shows that viral dissemination and interaction with intestinal epithelia may be host, tissue, and viral specific. Full article
Show Figures

Figure 1

Back to TopTop