Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = MOX

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2204 KB  
Article
Effect of Adding Molybdenum on Microstructure, Hardness, and Corrosion Resistance of an AlCoCrFeNiMo0.25 High-Entropy Alloy
by Mariusz Walczak, Wojciech J. Nowak, Wojciech Okuniewski and Dariusz Chocyk
Materials 2025, 18(19), 4566; https://doi.org/10.3390/ma18194566 - 30 Sep 2025
Viewed by 194
Abstract
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, [...] Read more.
Recent literature reports have shown that individual HEAs, especially those of the AlCoCrFeNi composition system alloyed with appropriately selected elements, exhibit excellent mechanical properties and corrosion resistance, making them promising candidates for replacing conventional materials such as austenitic steels in corrosive environments. Therefore, in the present study, the high-entropy alloy AlCoCrFeNiMo0.25 was examined and compared with AISI 304L steel and the reference alloy AlCoCrFeNi. The HEA was produced by arc melting in vacuum. The effect of molybdenum addition (5% at.) on the structure, mechanical properties, and corrosion resistance was evaluated. Potentiodynamic polarization and electrochemical impedance spectroscopy tests were carried out in a 3.5% NaCl solution in a three-electrode electrochemical system. The addition of molybdenum to AlCoCrFeNiMox alloy additionally caused, along with the BCC phase, the formation of σ phase and FCC phase (less than 1%), as well as changes in the microstructure, leading to the fragmentation of grains and the formation of a mosaic structure. On the basis of nanoindentation tests, it was established that the addition of Mo increases hardness and elastic modulus and improves nanoindentation coefficients H/E and H3/E2, as well as an increase in the elastic recovery index while decreasing plasticity index (vs. the reference equiatomic HEA). This indicates the improvement of anti-wear properties with impact loading resistance. In turn, electrochemical tests have shown that the addition of Mo improves corrosion resistance. Corrosion pitting develops in Al- and Ni-rich areas of HEA alloys, as a result of galvanic microcorrosion related to Cr chemical segregation. In general, the addition of 5% Mo results in a fine-grained mosaic structure, which primarily translates into favorable nanoindentation and corrosion properties of the AlCoCrFeNiMo0.25 alloy. Full article
19 pages, 9703 KB  
Article
Study on the Corrosion Behavior of Additively Manufactured NiCoCrFeyMox High-Entropy Alloys in Chloride Environments
by Chaoqun Xie, Yaqing Hou, Youpeng Song, Zhishan Mi, Fafa Li, Wei Guo and Dupeng He
Materials 2025, 18(19), 4544; https://doi.org/10.3390/ma18194544 - 30 Sep 2025
Viewed by 348
Abstract
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, [...] Read more.
This study aims to determine the optimal Mo content for corrosion resistance in two alloys, FeCoCrNiMox and Fe0.5CoCrNiMox. The alloys were fabricated using laser powder bed fusion (LPBF) technology with varying Mo contents (x = 0, 0.05, 0.1, 0.15). The corrosion behavior of these alloys was investigated in 3.5 wt.% NaCl solution at room temperature and 60 °C using electrochemical testing and X-ray photoelectron spectroscopy (XPS). The results show that all alloys exhibit good corrosion resistance at room temperature. However, at 60 °C, both alloys without Mo addition exhibit severe corrosion, while the Fe0.5CoCrNiMo0.1 alloy demonstrates the best corrosion resistance while maintaining the highest strength. The enhanced corrosion resistance is attributed to the optimal molybdenum addition, which refines the passive film structure and promotes the formation of Cr2O3. Furthermore, molybdenum oxide exists as MoO42− ions on the surface of the passive film, significantly improving the alloy’s corrosion resistance in chloride-containing environments. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

34 pages, 3191 KB  
Article
Padé Approximation for Solving Coupled Subgroup Neutron Transport Equations in Resonant Interference Media
by Yongfa Zhang, Song Li, Lei Liu, Xinwen Zhao, Qi Cai and Qian Zhang
Mathematics 2025, 13(18), 3003; https://doi.org/10.3390/math13183003 - 17 Sep 2025
Viewed by 238
Abstract
Resonance self-shielding in multi-resonant nuclide media is a dominant physical process in reactor neutronics analysis. This study proposes an improved subgroup method (ISM) based on Padé rational approximation, constructing a high-order rational function mapping between effective and background cross-sections to overcome the precision [...] Read more.
Resonance self-shielding in multi-resonant nuclide media is a dominant physical process in reactor neutronics analysis. This study proposes an improved subgroup method (ISM) based on Padé rational approximation, constructing a high-order rational function mapping between effective and background cross-sections to overcome the precision bottleneck of traditional DSMs and BIMs in nonlinear resonance interference scenarios. The method first generates cross-section relation data via ultra-fine group calculations, then solves subgroup parameters using a positive definite system, with a Spatial Homogenization (SPH) factor introduced for reaction rate conservation. Validation results show that ISM + SPH reduces k-infinity errors from −708 pcm (DSM) to +5 pcm for UO2 fuel, and from −269 pcm to +45 pcm for MOX fuel with 239Pu, significantly enhancing neutron transport accuracy in complex fuel systems. This work provides a theoretically rigorous and practically applicable approach for efficient resonance modeling in advanced reactor fuel design. Full article
(This article belongs to the Section E4: Mathematical Physics)
Show Figures

Figure 1

21 pages, 3539 KB  
Article
Sustained-Release Biodegradable Intracameral Implants Containing Dexamethasone and Moxifloxacin: Development and In Vivo Primary Assessment
by Pablo Miranda, Luis Ignacio Tártara, Analía Castro, Patricia Zimet, Ricardo Faccio, Santiago Daniel Palma, Álvaro W. Mombrú and Helena Pardo
Pharmaceutics 2025, 17(9), 1191; https://doi.org/10.3390/pharmaceutics17091191 - 13 Sep 2025
Viewed by 546
Abstract
Background/Objectives: We report the development of a novel intraocular sustained-release implantable pharmaceutical formulation, designed to be placed in the anterior chamber of the eye after cataract surgery. The device is intended to reduce postoperative inflammation, and to prevent opportunistic bacterial infections that [...] Read more.
Background/Objectives: We report the development of a novel intraocular sustained-release implantable pharmaceutical formulation, designed to be placed in the anterior chamber of the eye after cataract surgery. The device is intended to reduce postoperative inflammation, and to prevent opportunistic bacterial infections that may lead to endophthalmitis. Methods: The implants were produced via hot-melt extrusion, using a twin-screw extruder to process a homogeneous mixture of polylactide-co-glycolic acid, moxifloxacin hydrochloride (MOX HCl) and dexamethasone (DEX). Quality control tests included drug content determination, release rate profile evaluation, and several instrumental characterization techniques (scanning electron microscopy (SEM), confocal Raman microscopy, differential scanning calorimetry, and X-ray diffraction). Long-term and accelerated stability tests were also performed, following ICH guidelines. Sterilization was achieved by exposing samples to gamma radiation. In vivo exploratory studies were carried out in healthy rabbits to evaluate the safety and overall performance of the implantable formulation. Results: In terms of quality control, drug content was found to be homogeneously distributed throughout the implants, and it also met the label claim. In vitro release rate was constant for MOX HCl, but non-linear for DEX, increasing over time. In vivo preliminary tests showed that the inserts completely biodegraded within approximately 20 days. No clinical signs of anterior segment toxic syndrome or statistically significant intraocular pressure differences were found between treatment and control groups. Conclusions: The implants developed in this study can act as sustained-release depots for the delivery of both DEX and MOX HCl, and are biocompatible with ocular structures. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

20 pages, 15575 KB  
Article
Transport Properties of One-Dimensional van der Waals Heterostructures Based on Molybdenum Dichalcogenides
by Daulet Sergeyev and Kuanyshbek Shunkeyev
Crystals 2025, 15(7), 656; https://doi.org/10.3390/cryst15070656 - 18 Jul 2025
Viewed by 964
Abstract
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based [...] Read more.
The transport properties of one-dimensional van der Waals nanodevices composed of carbon nanotubes (CNTs), hexagonal boron nitride (hBN) nanotubes, and molybdenum dichalcogenide (MoX2) nanotubes were investigated within the framework of density functional theory (DFT). It was found that in nanodevices based on MoS2(24,24) and MoTe2(24,24), the effect of resonant tunneling is suppressed due to electron–phonon scattering. This suppression arises from the fact that these materials are semiconductors with an indirect band gap, where phonon participation is required to conserve momentum during transitions between the valence and conduction bands. In contrast, nanodevices incorporating MoSe2(24,24), which possesses a direct band gap, exhibit resonant tunneling, as quasiparticles can tunnel between the valence and conduction bands without a change in momentum. It was demonstrated that the presence of vacancy defects in the CNT segment significantly degrades quasiparticle transport compared to Stone–Wales (SW) defects. Furthermore, it was revealed that resonant interactions between SW defects in MoTe2(24,24)–hBN(27,27)–CNT(24,24) nanodevices can enhance the differential conductance under certain voltages. These findings may be beneficial for the design and development of nanoscale diodes, back nanodiodes, and tunneling nanodiodes. Full article
Show Figures

Figure 1

27 pages, 4124 KB  
Article
Evaluating Binary Molybdenum Alloys as Strong and Ductile High-Temperature Materials
by Cheng Fu, Jiayi Yan, Jiang Yu, Yuhong Ren and Sha Li
Materials 2025, 18(14), 3329; https://doi.org/10.3390/ma18143329 - 15 Jul 2025
Viewed by 506
Abstract
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is [...] Read more.
Molybdenum alloys as refractory alloys can provide strength levels at operating temperatures higher than that of Ni-base superalloys, yet their ductility is usually inferior to Ni-base alloys. Currently, commercialized Mo alloys are much fewer than Ni alloys. The motivation of this work is to explore opportunities of discovering useful alloys from the usually less investigated binary Mo-X systems (X = alloying element). With computational thermodynamics (CALPHAD), first-principles calculation, and mechanistic modeling combined, in this work a large number of Mo-X binary systems are investigated in terms of thermodynamic features and mechanical properties (yield strength, ductility, ductile-brittle transition temperature, creep resistance, and stress-strain relationship). The applicability of the alloy systems as solution-strengthened or precipitation-strengthened alloys is investigated. Starting from 92 Mo-X systems, a down-selection process is implemented, the results of which include three candidate systems for precipitation strengthening (Mo-B, Mo-C, Mo-Si) and one system (Mo-Re) for solid-solution strengthened alloy. In a composition optimization of Mo alloys to reach the properties of Ni-base superalloys, improving ductility is of top priority, for which Re plays a unique role. The presented workflow is also applicable to other bcc refractory alloy systems. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

15 pages, 2361 KB  
Article
Synergistic Leaching of Low-Grade Tungsten–Molybdenum Ore via a Novel KMnO4-Na2CO3-NaHCO3 Composite System Guided by Process Mineralogy
by Jian Kang, Linlin Tong, Qin Zhang, Han Zhao, Xinyao Wang, Bin Xiong and Hongying Yang
Minerals 2025, 15(7), 712; https://doi.org/10.3390/min15070712 - 3 Jul 2025
Cited by 1 | Viewed by 691
Abstract
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and [...] Read more.
The mineral processing of a low-grade tungsten-molybdenum ore (LGTMO) was investigated to assess the potential of recovering molybdenum (Mo) and tungsten (W). Techniques such as Polarizing Microscope (PM), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Mineral Liberation Analysis (MLA), and Advanced Mineral Identification and Characterization System (AMICS) were employed. The recoverable metals in the ore are Mo (0.158% ± 0.03%) and W (0.076% ± 0.02%). Mo exists in two forms: 63.30% as molybdenite and 36.7% as powellite (CaMoxW1−xO4). W is present as 75.26% scheelite and 24.74% powellite. The complete dissociation rates of molybdenite and scheelite-powellite are 27.14% and 88.87%, respectively. Particles of scheelite-powellite with a diameter less than 10 µm account for 34.61%, while molybdenite particles with a diameter below 10 µm make up 72.73%. Scheelite-powellite is mainly associated with olivine and dolomite, while molybdenite is mainly associated with pyroxene, calcite, and hornblende. Based on the process mineralogy, the mineralogical factors influencing the flotation recovery of molybdenite and scheelite-powellite were analyzed. Finally, a complete hydrometallurgical leaching test was carried out. The optimal experimental conditions are as follows: liquid-solid ratio of 6 mL/g, KMnO4 concentration of 0.015 mol/L, Na2CO3 concentration of 0.12 mol/L, NaHCO3 concentration of 0.024 mol/L, leaching time of 4 h, and leaching temperature of 85 °C. Under these conditions, the leaching efficiencies of Mo and W reach 79.23% and 41.41%, respectively. This study presents a novel approach for the recovery of refractory W and Mo resources in LGTMO while simultaneously providing a theoretical basis for the high-efficiency utilization of these resources. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 3759 KB  
Article
Glass-Forming Ability and Crystallization Behavior of Mo-Added Fe82−xSi4B12Nb1MoxCu1 (x = 0–2) Nanocrystalline Alloy
by Hyun Ah Im, Subong An, Ki-bong Kim, Sangsun Yang, Jung woo Lee and Jae Won Jeong
Metals 2025, 15(7), 744; https://doi.org/10.3390/met15070744 - 1 Jul 2025
Viewed by 612
Abstract
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic [...] Read more.
This study investigates the effects of molybdenum (Mo) additions on the crystallization behavior and soft magnetic properties and of Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys. Molybdenum enhances glass-forming ability (GFA) and magnetic properties by increasing negative mixing enthalpy (Hmix), mixing entropy (Smix), and atomic size mismatch (δ), which stabilize the amorphous phase. X-ray diffraction (XRD) analysis shows that Mo addition improves amorphous phase stability, further enhancing GFA. The simultaneous addition of Mo and Nb increases mixing entropy, promotes nucleation rates, and creates favorable conditions for optimizing nanocrystallization. Upon annealing, this optimized microstructure demonstrated low coercivity and high permeability. Notably, the Fe80Si4B12Nb1Mo2Cu1 ribbon, annealed at 470 °C for 10 min, exhibited exceptional soft magnetic properties, with a coercivity of 4.54 A/m, a maximum relative permeability of 48,410, and a saturation magnetization of 175.24 emu/g. High-resolution transmission electron microscopy (TEM) revealed an average crystal size of 18.16 nm. These findings suggest that Fe82-xSi4B12Nb1MoxCu1 (x = 0–2) nanocrystalline alloys are suitable for advanced electromagnetic applications pursuing miniaturization and high efficiency. Full article
Show Figures

Figure 1

18 pages, 675 KB  
Article
Effects of Hyperbaric Micro-Oxygenation on the Color, Volatile Composition, and Sensory Profile of Vitis vinifera L. cv. Monastrell Grape Must
by Antonio José Pérez-López, Luis Noguera-Artiaga, Patricia Navarro, Pablo Mompean, Alejandro Van Lieshout and José Ramón Acosta-Motos
Fermentation 2025, 11(7), 380; https://doi.org/10.3390/fermentation11070380 - 30 Jun 2025
Viewed by 798
Abstract
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. [...] Read more.
Color, aroma, and overall sensory quality in red wines are largely influenced by oxygen availability during fermentation. This study evaluated the effects of micro-oxygenation under hyperbaric conditions on the physicochemical, chromatic, volatile, and sensory properties of Vitis vinifera L. cv. Monastrell grape must. Grape clusters were manually harvested and fermented under controlled conditions, applying micro-oxygenation treatments at two fermentation stages (day 3 and day 13) within a hyperbaric chamber. Physicochemical analyses, CIELab color measurements, visible reflectance spectra, GC-FID volatile profiling, and descriptive sensory analysis were performed. Micro-oxygenated samples (M1_MOX and M2_MOX) showed significant increases in lightness (L*), redness (a*), chroma (C*), and reflectance in the 520–620 nm range, indicating enhanced extraction and stabilization of phenolic pigments. Volatile analysis revealed that these samples also contained higher concentrations of key esters and terpenes associated with fruity and floral notes. Sensory evaluation confirmed these findings, with MOX-treated wines displaying greater aromatic intensity, flavor persistence, and varietal character. Control samples (M1_CON and M2_CON) exhibited lower color saturation and volatile compound content, along with diminished sensory quality. These results suggest that hyperbaric micro-oxygenation is an effective strategy for improving color intensity and aromatic complexity during red wine fermentation under controlled, non-thermal conditions. Full article
Show Figures

Figure 1

30 pages, 8134 KB  
Article
Visual Alchemy: Alchemical Yijing Diagrams 丹道易圖 in the Illustrated Commentary on the Wuzhen Pian Based on the Zhouyi 周易悟真篇圖注
by Xin He
Religions 2025, 16(7), 812; https://doi.org/10.3390/rel16070812 - 20 Jun 2025
Viewed by 2450
Abstract
The Illustrated Commentary on the Wuzhen Pian Based on the Zhouyi (周易悟真篇圖注 Zhouyi Wuzhen Pian Tuzhu), authored by the Ming dynasty Confucian scholar Cheng Yiming 程易明, is an illustrated alchemical text that integrates the elixir methodology of Wuzhen pian 悟真篇 (the [...] Read more.
The Illustrated Commentary on the Wuzhen Pian Based on the Zhouyi (周易悟真篇圖注 Zhouyi Wuzhen Pian Tuzhu), authored by the Ming dynasty Confucian scholar Cheng Yiming 程易明, is an illustrated alchemical text that integrates the elixir methodology of Wuzhen pian 悟真篇 (the Awakening to Reality) with the images and numbers (xiangshu 象數) system of The Book of Changes (Zhouyi 周易). Centered on Daoist alchemical theory and elucidated through “Yijing diagrams” (yitu 易圖, diagrams based on the Yijing), it stands as a masterpiece within the tradition of alchemical Yijing studies (dandao yixue 丹道易學). Building on a review of the scholarly history of The Wuzhen Pian, this article focuses on the alchemical Yijing diagrams (dandao yitu 丹道易圖) in the Illustrated Commentary, exploring their terminological definitions, theoretical origins, and diagrammatic systems. By analyzing the structure of cosmology and internal alchemy practice theory (neidan gongfulun 內丹工夫論) as presented in these diagrams, this article demonstrates that the Illustrated Commentary not only inherits the theoretical legacy of early Yijing diagram scholars such as Chen Tuan (陳摶) and Yu Yan (俞琰), but also displays a unique systematic and intuitive approach to illustrating neidan practices through xiangshu diagrams (象數圖解). Notably, diagrams such as “Mundane Continuation vs. Alchemical Inversion” (shunfan nixian 順凡逆仙), the “Three-Five-One Mathematical Model” (sanwuyi shuli moxing 三五一數理模型), and the “Fire Phases” (huohou 火候) reveal attempts to construct an alchemical theoretical system centered on Yijing diagrams. The article further posits that the Illustrated Commentary bridges the gap between images–numbers Yijing studies (xiangshu yixue 象數易學) and alchemical visual hermeneutics, offering a fresh perspective centered on internal alchemy for the study of “Yijing Diagram Studies” (yitu xue 易圖學). Full article
Show Figures

Figure 1

20 pages, 1423 KB  
Article
The Solution Method for Ultra-Fine Group Slowing-Down Equations Applicable to Stochastic Media
by Song Li, Lei Liu, Yongfa Zhang, Qian Zhang and Qi Cai
Mathematics 2025, 13(11), 1857; https://doi.org/10.3390/math13111857 - 2 Jun 2025
Cited by 1 | Viewed by 542
Abstract
This study presents an innovative solution method for ultra-fine group slowing-down equations tailored to stochastic media with double heterogeneity (DH), focusing on advanced nuclear fuels such as fully ceramic microencapsulated (FCM) fuel and Mixed Oxide (MOX) fuel. Addressing the limitations of conventional resonance [...] Read more.
This study presents an innovative solution method for ultra-fine group slowing-down equations tailored to stochastic media with double heterogeneity (DH), focusing on advanced nuclear fuels such as fully ceramic microencapsulated (FCM) fuel and Mixed Oxide (MOX) fuel. Addressing the limitations of conventional resonance calculation methods in handling DH effects, the proposed UFGSP method (the ultra-fine group slowing-down method with the Sanchez–Pomraning method) integrates the Sanchez–Pomraning technique with the ultra-fine group transport theory to resolve spatially dependent resonance cross-sections in both matrix and particle phases. The method employs high-fidelity geometric modeling, iterative cross-section homogenization, and flux reconstruction to capture neutron self-shielding effects in stochastically distributed media. Validation across seven FCM fuel cases, four poison particle configurations (BISO/QUADRISO, Bi/Tri-structural Isotropic), and four plutonium spot problems demonstrated exceptional accuracy, with maximum deviations in effective multiplication factor keff and resonance cross-sections remaining within ±138 pcm and ±2.4%, respectively. Key innovations include the ability to resolve radial flux distributions within TRISO particles and address resonance interference in MOX fuel matrices. The results confirm that the UFGSP method significantly enhances computational precision for DH problems, offering a robust tool for next-generation reactor design and safety analysis. Full article
(This article belongs to the Section C: Mathematical Analysis)
Show Figures

Figure 1

20 pages, 1622 KB  
Article
Development and Validation of the Multi-Residue Method for Identification and Quantitation of Six Macrolide Antiparasitic Drugs
by Chuanmin Cheng, Yannan Chen, Xinyu Liu, Yanmin Lei, Qianxi Qin and Linli Cheng
Appl. Sci. 2025, 15(11), 6013; https://doi.org/10.3390/app15116013 - 27 May 2025
Viewed by 539
Abstract
Objective: This study aimed to develop a robust multi-residue analytical method for the precise identification and quantification of six macrolide antiparasitic agents commonly used in animal husbandry feeds. Method: Feed samples were extracted using a water-saturated acetonitrile solution. The resulting crude extracts [...] Read more.
Objective: This study aimed to develop a robust multi-residue analytical method for the precise identification and quantification of six macrolide antiparasitic agents commonly used in animal husbandry feeds. Method: Feed samples were extracted using a water-saturated acetonitrile solution. The resulting crude extracts were then treated with n-hexane and further purified by HLB solid-phase extraction columns to obtain the test solutions. These prepared samples were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The method was validated across six different feed matrices, including pig premix, concentrate, and complete feed, as well as chicken premix, concentrate, and compound feed. The method exhibited average recoveries ranging from 80.07% to 98.80%. The intra-day coefficients of variation (CV) for the first three feed types ranged from 1.98% to 12.84%, while for the latter three, the CVs ranged from 2.43% to 13.69%. Results: The method’s precision led to the quantification limit of avermectin, doramectin, acetyl avermectin, and ivermectin being 25 μg/kg, whereas for moxifloxacin and milbemycin, the limit was 50 μg/kg. These thresholds meet the stringent requirements for trace drug analysis, supporting the method’s suitability for regulatory surveillance and monitoring of these specified antibiotics in animal feeds. Full article
Show Figures

Figure 1

14 pages, 2386 KB  
Article
An Ultra-Sensitive Colorimetric Sensing Platform for Simultaneous Detection of Moxifloxacin/Ciprofloxacin and Cr(III) Ions Based on Ammonium Thioglycolate Functionalized Gold Nanoparticles
by Lihua Zhang, Jiang Li, Juan Wang, Xu Yan, Jinping Song and Feng Feng
Sensors 2025, 25(10), 3228; https://doi.org/10.3390/s25103228 - 21 May 2025
Cited by 1 | Viewed by 943
Abstract
Water pollution by antibiotics and heavy metals threatens the ecological environment and human health globally, yet there is no rapid method to detect multiple antibiotics and metal ions simultaneously. A simple, fast, and ultra-sensitive colorimetric chemosensor for the simultaneous detection of moxifloxacin (MOX), [...] Read more.
Water pollution by antibiotics and heavy metals threatens the ecological environment and human health globally, yet there is no rapid method to detect multiple antibiotics and metal ions simultaneously. A simple, fast, and ultra-sensitive colorimetric chemosensor for the simultaneous detection of moxifloxacin (MOX), ciprofloxacin (CIP), and Cr(III) based on the aggregation of ammonium thioglycolate (ATG)-functionalized gold nanoparticles (ATG-AuNPs) was developed. Following the addition of MOX, CIP, and Cr(III), a color change in the solution was observed from wine-red to blue-grey. The UV–Vis signal of the ATG-AuNPs system blended with MOX, CIP, and Cr(III) in the range of 0~200 µM, 0~100 µM, and 0~5 µM was assessed and measured with detection limits (LODs) of 1.57 µM, 1.30 µM, and 57.1 nM calculated by 3σ/S, respectively. Therefore, this system has the potential to act as an effective colorimetric chemosensor for simultaneously detecting MOX, CIP, and Cr(III) in complex environmental systems. Full article
(This article belongs to the Section Nanosensors)
Show Figures

Graphical abstract

10 pages, 2533 KB  
Technical Note
Continuous Compression Implants in Foot and Ankle Surgery: Tips and Tricks
by Konstantinos Tsikopoulos, Konstantinos Sidiropoulos, Dimitrios Kitridis, Constantinos Loizou and Alisdair Felstead
J. Clin. Med. 2025, 14(10), 3507; https://doi.org/10.3390/jcm14103507 - 16 May 2025
Viewed by 629
Abstract
Background: Continuous Compression Implants (CCIs) are low-profile implants made of nitinol and titanium. They offer multiple benefits in comparison to plate and screw fixation for foot and ankle indications, and they are designed in such a way that they continuously and dynamically compress [...] Read more.
Background: Continuous Compression Implants (CCIs) are low-profile implants made of nitinol and titanium. They offer multiple benefits in comparison to plate and screw fixation for foot and ankle indications, and they are designed in such a way that they continuously and dynamically compress the opposed bony surfaces throughout the entire healing process. Methods: In this study, we present our experience on the use of those nitinol implants for midfoot and hindfoot surgery. Furthermore, we elaborate on the advantages and downsides of using this internal fixation method and highlight common pitfalls which could lead to undesirable clinical outcomes. We also demonstrate our proposed surgical technique on how to use CCIs in a reproducible and reliable way and present surgical tips which could help reduce surgical time when utilising these implants. We also make surgical recommendations on their use and present the underlying biomechanics, which could provide a better understanding of the rationale behind using them in the field of foot and ankle surgery. Last but not least, we presented the early clinical and radiological results of a series of patients who underwent primary midfoot fusion for Lisfranc injury between 2020 and 2023. Results: With a minimum follow-up of 9 months, satisfactory clinical and radiological union was noted in all those patients. The mean difference between pre- and post-operative MOxFQ scores was −37.7 (95% CI was 16.9 to 58.5; p = 0.03). The mean post-operative VAS pain at rest was 3.2 (SD = 2.3). No major complications were noted. Conclusions: CCI internal fixation is a safe, reproducible, and reliable method when it comes to foot and ankle conditions, but it requires appropriate pre-operative planning, surgical training, and careful implantation. Full article
(This article belongs to the Special Issue Recent Advances in Trauma and Orthopaedic Surgery)
Show Figures

Figure 1

29 pages, 2615 KB  
Review
A Review: Applications of MOX Sensors from Air Quality Monitoring to Biomedical Diagnosis and Agro-Food Quality Control
by Elisabetta Poeta, Estefanía Núñez-Carmona and Veronica Sberveglieri
J. Sens. Actuator Netw. 2025, 14(3), 50; https://doi.org/10.3390/jsan14030050 - 9 May 2025
Cited by 1 | Viewed by 4358
Abstract
Metal oxide semiconductor (MOX) sensors are emerging as a groundbreaking technology due to their remarkable features: high sensitivity, rapid response time, low cost, and potential for miniaturization. Their ability to detect volatile organic compounds (VOCs) in real time makes them ideal tools for [...] Read more.
Metal oxide semiconductor (MOX) sensors are emerging as a groundbreaking technology due to their remarkable features: high sensitivity, rapid response time, low cost, and potential for miniaturization. Their ability to detect volatile organic compounds (VOCs) in real time makes them ideal tools for applications across various fields, including environmental monitoring, medicine, and the food industry. This paper explores the evolution and growing utilization of MOX sensors, with a particular focus on atmospheric pollution monitoring, non-invasive disease diagnostics through the analysis of volatile compounds emitted by the human body, and food quality assessment. The crucial role of MOX sensors in monitoring the freshness of food and water, detecting chemical and biological contamination, and identifying food fraud is specifically examined. The rapid advancement of this technology offers new opportunities to improve quality of life, food safety, and public health, positioning MOX sensors as a key tool to address future challenges in these vital sectors. Full article
(This article belongs to the Section Actuators, Sensors and Devices)
Show Figures

Figure 1

Back to TopTop