Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = MQTT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16560 KB  
Article
Vehicle-as-a-Sensor Approach for Urban Track Anomaly Detection
by Vlado Sruk, Siniša Fajt, Miljenko Krhen and Vladimir Olujić
Sensors 2025, 25(21), 6679; https://doi.org/10.3390/s25216679 (registering DOI) - 1 Nov 2025
Abstract
This paper presents a Vibration-based Track Anomaly Detection (VTAD) system designed for real-time monitoring of urban tram infrastructure. The novelty of VTAD is that it converts existing public transport vehicles into distributed mobile sensor platforms, eliminating the need for specialized diagnostic trains. The [...] Read more.
This paper presents a Vibration-based Track Anomaly Detection (VTAD) system designed for real-time monitoring of urban tram infrastructure. The novelty of VTAD is that it converts existing public transport vehicles into distributed mobile sensor platforms, eliminating the need for specialized diagnostic trains. The system integrates low-cost micro-electro-mechanical system (MEMS) accelerometers, Global Positioning System (GPS) modules, and Espressif 32-bit microcontrollers (ESP32) with wireless data transmission via Message Queuing Telemetry Transport (MQTT), enabling scalable and continuous condition monitoring. A stringent ±6σ statistical threshold was applied to vertical vibration signals, minimizing false alarms while preserving sensitivity to critical faults. Field tests conducted on multiple tram routes in Zagreb, Croatia, confirmed that the VTAD system can reliably detect and locate anomalies with meter-level accuracy, validated by repeated measurements. These results show that VTAD provides a cost-effective, scalable, and operationally validated predictive maintenance solution that supports integration into intelligent transportation systems and smart city infrastructure. Full article
(This article belongs to the Special Issue Feature Papers in Fault Diagnosis & Sensors 2025)
Show Figures

Figure 1

21 pages, 2516 KB  
Article
Wide-Area Visual Monitoring System Based on NB-IoT
by Guohua Qiu, Weiyu Tao, Rey-Chue Hwang and Chaofan Xie
Sensors 2025, 25(21), 6589; https://doi.org/10.3390/s25216589 - 26 Oct 2025
Viewed by 362
Abstract
Effective detection of unexpected events in wide-area surveillance remains a critical challenge in the development of intelligent monitoring systems. Recent advancements in Narrowband Internet of Things (NB-IoT) and 5G technologies provide a robust foundation to address this issue. This study presents an integrated [...] Read more.
Effective detection of unexpected events in wide-area surveillance remains a critical challenge in the development of intelligent monitoring systems. Recent advancements in Narrowband Internet of Things (NB-IoT) and 5G technologies provide a robust foundation to address this issue. This study presents an integrated architecture for real-time event detection and response. The system utilizes the Constrained Application Protocol (CoAP) to transmit encapsulated JPEG images from NB-IoT modules to an Internet of Things (IoT) server. Upon receipt, images are decoded, processed, and archived in a centralized database. Subsequently, image data are transmitted to client applications via WebSocket, leveraging the Message Queuing Telemetry Transport (MQTT) protocol. By performing temporal image comparison, the system identifies abnormal events within the monitored area. Once an anomaly is detected, a visual alert is generated and presented through an interactive interface. The test results show that the image recognition accuracy is consistently above 98%. This approach enables intelligent, scalable, and responsive wide-area surveillance reliably, overcoming the constraints of conventional isolated and passive monitoring systems. Full article
Show Figures

Figure 1

20 pages, 1257 KB  
Article
Detecting AI-Generated Network Traffic Using Transformer–MLP Ensemble
by Byeongchan Kim, Abhishek Chaudhary and Sunoh Choi
Appl. Sci. 2025, 15(21), 11338; https://doi.org/10.3390/app152111338 - 22 Oct 2025
Viewed by 308
Abstract
The rapid growth of generative artificial intelligence (AI) has enabled diverse applications but also introduced new attack techniques. Similar to deepfake media, generative AI can be exploited to create AI-generated traffic that evades existing intrusion detection systems (IDSs). This paper proposes a Dual [...] Read more.
The rapid growth of generative artificial intelligence (AI) has enabled diverse applications but also introduced new attack techniques. Similar to deepfake media, generative AI can be exploited to create AI-generated traffic that evades existing intrusion detection systems (IDSs). This paper proposes a Dual Detection System to detect such synthetic network traffic in the Message Queuing Telemetry Transport (MQTT) protocol widely used in Internet of Things (IoT) environments. The system operates in two stages: (i) primary filtering with a Long Short-Term Memory (LSTM) model to detect malicious traffic, and (ii) secondary verification with a Transformer–MLP ensemble to identify AI-generated traffic. Experimental results show that the proposed method achieves an average accuracy of 99.1 ± 0.6% across different traffic types (normal, malicious, and AI-generated), with nearly 100% detection of synthetic traffic. These findings demonstrate that the proposed dual detection system effectively overcomes the limitations of single-model approaches and significantly enhances detection performance. Full article
Show Figures

Figure 1

27 pages, 6565 KB  
Article
BLE-Based Custom Devices for Indoor Positioning in Ambient Assisted Living Systems: Design and Prototyping
by David Díaz-Jiménez, José L. López Ruiz, Juan Carlos Cuevas-Martínez, Joaquín Torres-Sospedra, Enrique A. Navarro and Macarena Espinilla Estévez
Sensors 2025, 25(20), 6499; https://doi.org/10.3390/s25206499 - 21 Oct 2025
Viewed by 601
Abstract
This work presents the design and prototyping of two reconfigurable BLE-based devices developed to overcome the limitations of commercial platforms in terms of configurability, data transparency, and energy efficiency. The first is a wearable smart wristband integrating inertial and biometric sensors, while the [...] Read more.
This work presents the design and prototyping of two reconfigurable BLE-based devices developed to overcome the limitations of commercial platforms in terms of configurability, data transparency, and energy efficiency. The first is a wearable smart wristband integrating inertial and biometric sensors, while the second is a configurable beacon (ASIA Beacon) able to dynamically adjust key transmission parameters such as channel selection and power level. Both devices were engineered with energy-aware components, OTA update support, and flexible 3D-printed enclosures optimized for residential environments. The firmware, developed under Zephyr RTOS, exposes data through standardized interfaces (GATT, MQTT), facilitating their integration into IoT architectures and research-oriented testbeds. Initial experiments carried out in an anechoic chamber demonstrated improved RSSI stability, extended autonomy (up to 4 months for beacons and 3 weeks for the wristband), and reliable real-time data exchange. These results highlight the feasibility and potential of the proposed devices for future deployment in ambient assisted living environments, while the focus of this work remains on the hardware and software development process and its validation. Full article
(This article belongs to the Special Issue RF and IoT Sensors: Design, Optimization and Applications)
Show Figures

Figure 1

18 pages, 3398 KB  
Article
PlugID: A Platform for Authenticated Energy Consumption to Enhance Accountability and Efficiency in Smart Buildings
by Raphael Machado, Leonardo Pinheiro, Victor Santos and Bruno Salgado
Energies 2025, 18(20), 5466; https://doi.org/10.3390/en18205466 - 17 Oct 2025
Viewed by 218
Abstract
Energy efficiency in shared environments, such as offices and laboratories, is hindered by a lack of individual accountability. Traditional smart metering provides aggregated data but fails to attribute consumption to specific users, limiting the effectiveness of behavioral change initiatives. This paper introduces the [...] Read more.
Energy efficiency in shared environments, such as offices and laboratories, is hindered by a lack of individual accountability. Traditional smart metering provides aggregated data but fails to attribute consumption to specific users, limiting the effectiveness of behavioral change initiatives. This paper introduces the “authenticated energy consumption” paradigm, an innovative approach that directly links energy use to an identified user. We present PlugID, a low-cost, open-protocol IoT platform designed and built to implement this paradigm. The PlugID platform comprises a custom smart plug with RFID-based authentication and a secure, cloud-based data analytics backend. The device utilizes an ESP8266 microcontroller, Tasmota firmware, and the MQTT protocol over TLS for secure communication. Seven PlugID units were deployed in a small office environment to demonstrate the system’s feasibility. The main contribution of this work is the design, implementation, and validation of a complete, end-to-end system for authenticated energy monitoring. We argue that by making energy consumption an auditable and attributable event, the PlugID platform provides a powerful new tool to enforce energy policies, foster user awareness, and promote genuine efficiency. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 4th Edition)
Show Figures

Figure 1

16 pages, 4139 KB  
Article
Comparing the Long-Term Stability and Measurement Performance of a Self-Made Integrated Three-in-One Microsensor and Commercial Sensors for Heating, Ventilation, and Air Conditioning (HVAC) Applications
by Chi-Yuan Lee, Jiann-Shing Shieh, Guan-Quan Huang, Chen-Kai Liu, Najsm Cox and Chia-Hao Chou
Processes 2025, 13(10), 3306; https://doi.org/10.3390/pr13103306 - 15 Oct 2025
Viewed by 242
Abstract
Building on our previous 310-h test of a larger MEMS sensor, this study develops and validates a miniaturized, lift-off-fabricated, and FPC-integrated three-in-one microsensor. In addition to extending the operation to 744 h, we introduce a wireless MQTT/Node-RED architecture to enable real-time IoT-level monitoring [...] Read more.
Building on our previous 310-h test of a larger MEMS sensor, this study develops and validates a miniaturized, lift-off-fabricated, and FPC-integrated three-in-one microsensor. In addition to extending the operation to 744 h, we introduce a wireless MQTT/Node-RED architecture to enable real-time IoT-level monitoring in factory HVAC ducts. The microsensor was fabricated using Micro-electro-mechanical systems (MEMS) technology and integrated with a flexible printed circuit (FPC) for improved mechanical compliance and ease of installation. To assess its durability and reliability, a 744-h long-term test was conducted in an industrial HVAC environment, where the performance of the microsensor was compared with that of two commercially available velocity sensors. The integrated sensor exhibited stable operation throughout the test and demonstrated effective measurement capabilities in the ranges of 10–40 °C for temperature, 60–90% RH for humidity, and 1.5–5.0 m/s for airflow velocity, with an overall accuracy of approximately ±3%. The results highlight the sensor’s potential for real-time environmental monitoring in factory HVAC systems, offering advantages in integration, adaptability, and cost-effectiveness compared to traditional single-function commercial sensors. Full article
Show Figures

Figure 1

33 pages, 12260 KB  
Article
Open-Source Smart Wireless IoT Solar Sensor
by Victor-Valentin Stoica, Alexandru-Viorel Pălăcean, Dumitru-Cristian Trancă and Florin-Alexandru Stancu
Appl. Sci. 2025, 15(20), 11059; https://doi.org/10.3390/app152011059 - 15 Oct 2025
Viewed by 288
Abstract
IoT (Internet of Things)-enabled solar irradiance sensors are evolving toward energy harvesting, interoperability, and open-source availability, yet current solutions remain either costly, closed, or limited in robustness. Based on a thorough literature review and identification of future trends, we propose an open-source smart [...] Read more.
IoT (Internet of Things)-enabled solar irradiance sensors are evolving toward energy harvesting, interoperability, and open-source availability, yet current solutions remain either costly, closed, or limited in robustness. Based on a thorough literature review and identification of future trends, we propose an open-source smart wireless sensor that employs a small photovoltaic module simultaneously as sensing element and energy harvester. The device integrates an ESP32 microcontroller, precision ADC (Analog-to-Digital converter), and programmable load to sweep the PV (photovoltaic) I–V (Current–Voltage) curve and compute irradiance from electrical power and solar-cell temperature via a calibrated third-order polynomial. Supporting Modbus RTU (Remote Terminal Unit)/TCP (Transmission Control Protocol), MQTT (Message Queuing Telemetry Transport), and ZigBee, the sensor operates from batteries or supercapacitors through sleep–wake cycles. Validation against industrial irradiance meters across 0–1200 W/m2 showed average errors below 5%, with deviations correlated to irradiance volatility and sampling cadence. All hardware, firmware, and data-processing tools are released as open source to enable reproducibility and distributed PV monitoring applications. Full article
Show Figures

Figure 1

29 pages, 2319 KB  
Article
Research on the Development of a Building Model Management System Integrating MQTT Sensing
by Ziang Wang, Han Xiao, Changsheng Guan, Liming Zhou and Daiguang Fu
Sensors 2025, 25(19), 6069; https://doi.org/10.3390/s25196069 - 2 Oct 2025
Viewed by 696
Abstract
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data [...] Read more.
Existing building management systems face critical limitations in real-time data integration, primarily relying on static models that lack dynamic updates from IoT sensors. To address this gap, this study proposes a novel system integrating MQTT over WebSocket with Three.js visualization, enabling real-time sensor-data binding to Building Information Models (BIM). The architecture leverages MQTT’s lightweight publish-subscribe protocol for efficient communication and employs a TCP-based retransmission mechanism to ensure 99.5% data reliability in unstable networks. A dynamic topic-matching algorithm is introduced to automate sensor-BIM associations, reducing manual configuration time by 60%. The system’s frontend, powered by Three.js, achieves browser-based 3D visualization with sub-second updates (280–550 ms latency), while the backend utilizes SpringBoot for scalable service orchestration. Experimental evaluations across diverse environments—including high-rise offices, industrial plants, and residential complexes—demonstrate the system’s robustness: Real-time monitoring: Fire alarms triggered within 2.1 s (22% faster than legacy systems). Network resilience: 98.2% availability under 30% packet loss. User efficiency: 4.6/5 satisfaction score from facility managers. This work advances intelligent building management by bridging IoT data with interactive 3D models, offering a scalable solution for emergency response, energy optimization, and predictive maintenance in smart cities. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

42 pages, 28795 KB  
Article
Secure and Efficient Data Encryption for Internet of Robotic Things via Chaos-Based Ascon
by Gülyeter Öztürk, Murat Erhan Çimen, Ünal Çavuşoğlu, Osman Eldoğan and Durmuş Karayel
Appl. Sci. 2025, 15(19), 10641; https://doi.org/10.3390/app151910641 - 1 Oct 2025
Viewed by 356
Abstract
The increasing adoption of digital technologies, robotic systems, and IoT applications in sectors such as medicine, agriculture, and industry drives a surge in data generation and necessitates secure and efficient encryption. For resource-constrained systems, lightweight yet robust cryptographic algorithms are critical. This study [...] Read more.
The increasing adoption of digital technologies, robotic systems, and IoT applications in sectors such as medicine, agriculture, and industry drives a surge in data generation and necessitates secure and efficient encryption. For resource-constrained systems, lightweight yet robust cryptographic algorithms are critical. This study addresses the security demands of IoRT systems by proposing an enhanced chaos-based encryption method. The approach integrates the lightweight structure of NIST-standardized Ascon-AEAD128 with the randomness of the Zaslavsky map. Ascon-AEAD128 is widely used on many hardware platforms; therefore, it must robustly resist both passive and active attacks. To overcome these challenges and enhance Ascon’s security, we integrate into Ascon the keys and nonces generated by the Zaslavsky chaotic map, which is deterministic, nonperiodic, and highly sensitive to initial conditions and parameter variations.This integration yields a chaos-based Ascon variant with a higher encryption security relative to the standard Ascon. In addition, we introduce exploratory variants that inject non-repeating chaotic values into the initialization vectors (IVs), the round constants (RCs), and the linear diffusion constants (LCs), while preserving the core permutation. Real-time tests are conducted using Raspberry Pi 3B devices and ROS 2–based IoRT robots. The algorithm’s performance is evaluated over 100 encryption runs on 12 grayscale/color images and variable-length text transmitted via MQTT. Statistical and differential analyses—including histogram, entropy, correlation, chi-square, NPCR, UACI, MSE, MAE, PSNR, and NIST SP 800-22 randomness tests—assess the encryption strength. The results indicate that the proposed method delivers consistent improvements in randomness and uniformity over standard Ascon-AEAD128, while remaining comparable to state-of-the-art chaotic encryption schemes across standard security metrics. These findings suggest that the algorithm is a promising option for resource-constrained IoRT applications. Full article
(This article belongs to the Special Issue Recent Advances in Mechatronic and Robotic Systems)
Show Figures

Figure 1

36 pages, 3753 KB  
Article
Energy Footprint and Reliability of IoT Communication Protocols for Remote Sensor Networks
by Jerzy Krawiec, Martyna Wybraniak-Kujawa, Ilona Jacyna-Gołda, Piotr Kotylak, Aleksandra Panek, Robert Wojtachnik and Teresa Siedlecka-Wójcikowska
Sensors 2025, 25(19), 6042; https://doi.org/10.3390/s25196042 - 1 Oct 2025
Viewed by 422
Abstract
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically [...] Read more.
Excessive energy consumption of communication protocols in IoT/IIoT systems constitutes one of the key constraints for the operational longevity of remote sensor nodes, where radio transmission often incurs higher energy costs than data acquisition or local computation. Previous studies have remained fragmented, typically focusing on selected technologies or specific layers of the communication stack, which has hindered the development of comparable quantitative metrics across protocols. The aim of this study is to design and validate a unified evaluation framework enabling consistent assessment of both wired and wireless protocols in terms of energy efficiency, reliability, and maintenance costs. The proposed approach employs three complementary research methods: laboratory measurements on physical hardware, profiling of SBC devices, and simulations conducted in the COOJA/Powertrace environment. A Unified Comparative Method was developed, incorporating bilinear interpolation and weighted normalization, with its robustness confirmed by a Spearman rank correlation coefficient exceeding 0.9. The analysis demonstrates that MQTT-SN and CoAP (non-confirmable mode) exhibit the highest energy efficiency, whereas HTTP/3 and AMQP incur the greatest energy overhead. Results are consolidated in the ICoPEP matrix, which links protocol characteristics to four representative RS-IoT scenarios: unmanned aerial vehicles (UAVs), ocean buoys, meteorological stations, and urban sensor networks. The framework provides well-grounded engineering guidelines that may extend node lifetime by up to 35% through the adoption of lightweight protocol stacks and optimized sampling intervals. The principal contribution of this work is the development of a reproducible, technology-agnostic tool for comparative assessment of IoT/IIoT communication protocols. The proposed framework addresses a significant research gap in the literature and establishes a foundation for further research into the design of highly energy-efficient and reliable IoT/IIoT infrastructures, supporting scalable and long-term deployments in diverse application environments. Full article
(This article belongs to the Collection Sensors and Sensing Technology for Industry 4.0)
Show Figures

Figure 1

36 pages, 5130 KB  
Article
SecureEdge-MedChain: A Post-Quantum Blockchain and Federated Learning Framework for Real-Time Predictive Diagnostics in IoMT
by Sivasubramanian Ravisankar and Rajagopal Maheswar
Sensors 2025, 25(19), 5988; https://doi.org/10.3390/s25195988 - 27 Sep 2025
Viewed by 741
Abstract
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework [...] Read more.
The burgeoning Internet of Medical Things (IoMT) offers unprecedented opportunities for real-time patient monitoring and predictive diagnostics, yet the current systems struggle with scalability, data confidentiality against quantum threats, and real-time privacy-preserving intelligence. This paper introduces Med-Q Ledger, a novel, multi-layered framework designed to overcome these critical limitations in the Medical IoT domain. Med-Q Ledger integrates a permissioned Hyperledger Fabric for transactional integrity with a scalable Holochain Distributed Hash Table for high-volume telemetry, achieving horizontal scalability and sub-second commit times. To fortify long-term data security, the framework incorporates post-quantum cryptography (PQC), specifically CRYSTALS-Di lithium signatures and Kyber Key Encapsulation Mechanisms. Real-time, privacy-preserving intelligence is delivered through an edge-based federated learning (FL) model, utilizing lightweight autoencoders for anomaly detection on encrypted gradients. We validate Med-Q Ledger’s efficacy through a critical application: the prediction of intestinal complications like necrotizing enterocolitis (NEC) in preterm infants, a condition frequently necessitating emergency colostomy. By processing physiological data from maternal wearable sensors and infant intestinal images, our integrated Random Forest model demonstrates superior performance in predicting colostomy necessity. Experimental evaluations reveal a throughput of approximately 3400 transactions per second (TPS) with ~180 ms end-to-end latency, a >95% anomaly detection rate with <2% false positives, and an 11% computational overhead for PQC on resource-constrained devices. Furthermore, our results show a 0.90 F1-score for colostomy prediction, a 25% reduction in emergency surgeries, and 31% lower energy consumption compared to MQTT baselines. Med-Q Ledger sets a new benchmark for secure, high-performance, and privacy-preserving IoMT analytics, offering a robust blueprint for next-generation healthcare deployments. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 3141 KB  
Article
Machine Learning-Assisted Cryptographic Security: A Novel ECC-ANN Framework for MQTT-Based IoT Device Communication
by Kalimu Karimunda, Jean de Dieu Marcel Ufitikirezi, Roman Bumbálek, Tomáš Zoubek, Petr Bartoš, Radim Kuneš, Sandra Nicole Umurungi, Anozie Chukwunyere, Mutagisha Norbelt and Gao Bo
Computation 2025, 13(10), 227; https://doi.org/10.3390/computation13100227 - 26 Sep 2025
Viewed by 579
Abstract
The Internet of Things (IoT) has surfaced as a revolutionary technology, enabling ubiquitous connectivity between devices and revolutionizing traditional lifestyles through smart automation. As IoT systems proliferate, securing device-to-device communication and server–client data exchange has become crucial. This paper presents a novel security [...] Read more.
The Internet of Things (IoT) has surfaced as a revolutionary technology, enabling ubiquitous connectivity between devices and revolutionizing traditional lifestyles through smart automation. As IoT systems proliferate, securing device-to-device communication and server–client data exchange has become crucial. This paper presents a novel security framework that integrates elliptic curve cryptography (ECC) with artificial neural networks (ANNs) to enhance the Message Queuing Telemetry Transport (MQTT) protocol. Our study evaluated multiple machine learning algorithms, with ANN demonstrating superior performance in anomaly detection and classification. The hybrid approach not only encrypts communications but also employs the optimized ANN model to detect and classify anomalous traffic patterns. The proposed model demonstrates robust security features, successfully identifying and categorizing various attack types with 90.38% accuracy while maintaining message confidentiality through ECC encryption. Notably, this framework retains the lightweight characteristics essential for IoT devices, making it especially relevant for environments where resources are constrained. To our knowledge, this represents the first implementation of an integrated ECC-ANN approach for securing MQTT-based IoT communications, offering a promising solution for next-generation IoT security requirements. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

20 pages, 3294 KB  
Article
Non-Intrusive Infant Body Position Detection for Sudden Infant Death Syndrome Prevention Using Pressure Mats
by Antonio Garcia-Herraiz, Susana Nunez-Nagy, Luis Cruz-Piris and Bernardo Alarcos
Technologies 2025, 13(10), 427; https://doi.org/10.3390/technologies13100427 - 23 Sep 2025
Viewed by 474
Abstract
Sudden Infant Death Syndrome (SIDS) is one of the leading causes of postnatal mortality, with the prone sleeping position identified as a critical risk factor. This article presents the design, implementation, and validation of a low-cost embedded system for unobtrusive, real-time monitoring of [...] Read more.
Sudden Infant Death Syndrome (SIDS) is one of the leading causes of postnatal mortality, with the prone sleeping position identified as a critical risk factor. This article presents the design, implementation, and validation of a low-cost embedded system for unobtrusive, real-time monitoring of infant posture. The system acquires data from a pressure mat on which the infant rests, converting the pressure matrix into an image representing the postural imprint. A Convolutional Neural Network (CNN) has been trained to classify these images and distinguish between prone and supine positions with high accuracy. The trained model was optimized and deployed in a data acquisition and processing system (DAQ) based on the Raspberry Pi platform, enabling local and autonomous inference. To prevent false positives, the system activates a visual and audible alarm upon detection of a sustained risk position, alongside remote notifications via the MQTT protocol. The results demonstrate that the prototype is capable of reliably and continuously identifying the infant’s posture when used by people who are not technology experts. We conclude that it is feasible to develop an autonomous, accessible, and effective monitoring system that can serve as a support tool for caregivers and as a technological basis for new strategies in SIDS prevention. Full article
Show Figures

Graphical abstract

24 pages, 1518 KB  
Article
Smart Matter-Enabled Air Vents for Trombe Wall Automation and Control
by Gabriel Conceição, Tiago Coelho, Afonso Mota, Ana Briga-Sá and António Valente
Electronics 2025, 14(18), 3741; https://doi.org/10.3390/electronics14183741 - 22 Sep 2025
Viewed by 810
Abstract
Improving energy efficiency in buildings is critical for supporting sustainable growth in the construction sector. In this context, the implementation of passive solar solutions in the building envelope plays an important role. Trombe wall is a passive solar system that presents great potential [...] Read more.
Improving energy efficiency in buildings is critical for supporting sustainable growth in the construction sector. In this context, the implementation of passive solar solutions in the building envelope plays an important role. Trombe wall is a passive solar system that presents great potential for passive solar heating purposes. However, its performance can be enhanced when the Internet of Things is applied. This study employs a multi-domain smart system based on Matter-enabled IoT technology for maximizing Trombe wall functionality using appropriate 3D-printed ventilation grids. The system includes ESP32-C6 microcontrollers with temperature sensors and ventilation grids controlled by actuated servo motors. The system is automated with a Raspberry Pi 5 running Home Assistant OS with Matter Server. The integration of the Matter protocol provides end-to-end interoperability and secure communication, avoiding traditional systems based on MQTT. This work demonstrates the technical feasibility of implementing smart ventilation control for Trombe walls using a Matter-enabled infrastructure. The system proves to be capable of executing real-time vent management based on predefined temperature thresholds. This setup lays the foundation for scalable and interoperable thermal automation in passive solar systems, paving the way for future optimizations and addicional implementations, namely in order to improve indoor thermal comfort in smart and more efficient buildings. Full article
(This article belongs to the Special Issue Parallel and Distributed Computing for Emerging Applications)
Show Figures

Figure 1

29 pages, 3242 KB  
Article
A Platform-Agnostic Publish–Subscribe Architecture with Dynamic Optimization
by Ahmed Twabi, Yepeng Ding and Tohru Kondo
Future Internet 2025, 17(9), 426; https://doi.org/10.3390/fi17090426 - 19 Sep 2025
Viewed by 379
Abstract
Real-time media streaming over publish–subscribe platforms is increasingly vital in scenarios that demand the scalability of event-driven architectures while ensuring timely media delivery. This is especially true in multi-modal and resource-constrained environments, such as IoT, Physical Activity Recognition and Measure (PARM), and Internet [...] Read more.
Real-time media streaming over publish–subscribe platforms is increasingly vital in scenarios that demand the scalability of event-driven architectures while ensuring timely media delivery. This is especially true in multi-modal and resource-constrained environments, such as IoT, Physical Activity Recognition and Measure (PARM), and Internet of Video Things (IoVT), where integrating sensor data with media streams often leads to complex hybrid setups that compromise consistency and maintainability. Publish–subscribe (pub/sub) platforms like Kafka and MQTT offer scalability and decoupled communication but fall short in supporting real-time video streaming due to platform-dependent design, rigid optimization, and poor sub-second media handling. This paper presents FrameMQ, a layered, platform-agnostic architecture designed to overcome these limitations by decoupling application logic from platform-specific configurations and enabling dynamic real-time optimization. FrameMQ exposes tunable parameters such as compression and segmentation, allowing integration with external optimizers. Using Particle Swarm Optimization (PSO) as an exemplary optimizer, FrameMQ reduces total latency from over 2300 ms to below 400ms under stable conditions (over an 80% improvement) and maintains up to a 52% reduction under adverse network conditions. These results demonstrate FrameMQ’s ability to meet the demands of latency-sensitive applications, such as real-time streaming, IoT, and surveillance, while offering portability, extensibility, and platform independence without modifying the core application logic. Full article
Show Figures

Figure 1

Back to TopTop